A NEW LAND REALLOCATION MODEL FOR LAND CONSOLIDATION

Tayfun CAY, Fatih ISCAN
University of Selcuk, Department of Geodesy and Photogrammetry Eng, Faculty of Engineering And Architecture Faculty, 42031, Selcuklu, Konya, Turkey, E-mail: tcay@selcuk.edu.tr , fiscan@selcuk.edu.tr

INTRODUCTION

Land consolidation projects are conducted to consolidate fragmented agricultural properties, scattered parcels of the distinct farms, and thus to achieve improvements in the harvest and the living standards. It is carried out by means of projects neighbouring the rural area through a project management. Land consolidation may also include the improvement of the road and of the water management system, as well as of the landscape and the conditions of nature in project areas (Sonnenberg, 2002).
It also includes the process of fragmented or scattered plots of farms. For this purpose, the land is divided into blocks by planning an optimal network for roads and channels and then the problem of reallocation is solved by answering to the question "how much land from which block is given to a farm?". In some of the land consolidation applicable country, the possible applications of operations research techniques are investigated.

However, land reallocation should be done by using modern methods, because of technological development and science. Fuzzy logic provides one of the most important modern methods that can be used for this purpose.

In the present study the fuzzy logic theory, which has been increasingly used day by day was investigated and the land reallocation phase of land consolidation, which does not have a definite mathematical model, was modeled by using the fuzzy logic method.
The origin of the fuzzy logic approach dates back to 1965 since Lotfi Zadeh’s introduction of the fuzzy set theory and its applications. Since then the fuzzy logic concept has found a very wide range of applications in various domains like estimation, prediction, control, approximate reasoning, pattern recognition, medical computing, robotics, optimization and industrial engineering, etc (Sen, 2004).

Fuzzy logic is a recognized instrument for modeling in many scientific and technical fields. There are also a lot of problems where fuzzy methods can be used to reach better solutions than classical models can do.

The basic elements of each fuzzy logic system are, as shown in Figure 1, rules, fuzzifier, inference engine, and defuzzifier.

Figure 1. Basic elements of a fuzzy logic
Land reallocation process is the most difficult and the most important step in land consolidation studies. For this reason, it has a highly complex structure. It is of great importance that farmers do not face unfair practices and policies and that they are given equivalent parcels when the land reallocation process is carried out. The satisfaction of farmers directly affects the success of land consolidation. For this reason, it is of great importance what the farmers pay attention to in land reallocation, because the input variables of the fuzzy logic model to be constructed should be determined according to the criteria of the farmers and the implementers.

The points which the farmers and implementers pay attention to in land reallocation in previous studies can be listed as below,

- The place of the biggest parcel of land owned by the farmer,
- The place of the parcel density owned by the farmer,
- The place of the immovable facility owned by the farmer,
- The place of the second biggest parcel of land owned by the farmer,
These criteria constitute the input variables of the fuzzy logic system. However, as these criteria signify the location information, they should be represented in terms of angle and distance. That is, a criterion has to be represented as two different input variables. For this reason, there has to be $4 \times 2 = 8$ input variables. Similarly, as the output also has to represent a location, there has to be two outputs. However, in a system with eight inputs and two outputs, there may be thousands of rules depending on the number of membership functions.

For this reason, it is possible to decrease the number of inputs in order to set up the system in an easy way. Therefore, the place of the biggest parcel can be taken as the first input variable, and the other three criteria can be taken as the second input variable, because the place of immovable facility, parcel density and the second biggest parcel of land owned by the farmer may not exist at the same time. Of these criteria, the one which exists can be taken as input. An input variable is also required in order to determine according to which criterion and from which block the land will be given.
Therefore, it should be taken into consideration if the parcel areas are smaller or bigger than one another. By this way, a five-input and two-output fuzzy system can be formed. As the input and output variables will be entered as polar coordinate values, a starting point should be determined. The smallest coordinate values of the project area should be taken for the starting point. The biggest coordinate values should be taken as the endpoint in order to determine the borders of the project area. That is, the project area should be surrounded by a tetragon (Figure 2). The general structure of the fuzzy logic model is as shown in Figure 3.

Figure 2. Project area
The membership functions and the ranges of the input and output variables should be the same, except for the 5th input. The reason for this is that the distance and the bearing angle will be the same for the project area. The range for the distance inputs should be taken as the distance from the starting point to the end point (diagonal length). It should not exceed 100 grades for the bearing angle. This constitutes the first step of the system.
It is not possible to solve the problem of land reallocation in land consolidation in a single step. The correct result can only be achieved in a number of steps. For this reason, the project area is divided into 4 zones. In the first step of the fuzzy system, land reallocation to these four regions is first performed (Figure 4).

As the result of the first land reallocation, it is determined which region each enterprise is located in. After this, we proceed to the second system. In this system, each enterprise is processed in the region where it is located. That is, it does not have a relation with other zones. The model is the same also in the second system. That is, each area is divided again into four zones. However, only the ranges in the distance inputs will change. The range equals to the half of the preceding range. In this way, the project area is divided into regions until it is correctly determined which enterprise will be given to which block. In other words, the clustering process is carried out. Land reallocation is implemented in an easier way with the clustering process.
For the first system, a model is formed in the fuzzy logic toolbox of the Matlab software (Figure 5).

The membership functions belonging to the model are shown in Figure 6, 7 and 8. While developing the fuzzy logic algorithm, the shape of the membership functions was selected as trapezoid. There are three selected membership functions for each linguistic variable.
The membership functions of the output variable are the same as that of the input variables. After the membership functions were formed, 164 rules were written for the first system in accordance with expert opinions (Figure 9). The centroid method is used for defuzzification.

After the rules are written, each enterprise is included into this system. The region to which each enterprise will belong to is determined (Figure 10). Afterwards, we proceed to the second system. In the second system, the enterprises divided to the zones are reevaluated in the model existing in that zone. These processes are carried out until it is determined to which block the enterprise will be given.
CONCLUSION

In this study, the fuzzy logic method is suggested for the land reallocation process of land consolidation operations. Fast, economic and effective results can be achieved through this method. As the input and output variables regarding the model are given, implementers can perform their projects according to these variables. A number of differences may occur in input variables for certain projects. These differences will not affect the land reallocation model in a significant manner.

THANK YOU FOR ATTENTION