How to create the Best Suitable Map Projection

Yury Huryeu and Uladzimir Padshyvalau
Polotsk State University, Belarus

Outline

• Introduction
• Main criterion of the best suitable projection development
• Polyconic projection design
• Composite projection design
• Design principles for a map of isocols for a geodetic projection
• Maps of isocols - examples
• Discussion and conclusions
Introduction

- A big library of map projections is used for GIS nowadays

- The idea of the best suitable projection is state-of-the-art

- Our algorithm is an alternative to map projections used in the world

Main criterion of the development
best suitable projection

- Chebyshev-Grave criterion which corresponds to the idea of ‘ideal projection’

- The idea: isocol should be close or coincide to a boundary of the represented area
Polyconic projection design

\[\alpha = \sqrt{1 + \frac{1 - (b/a)^2}{1 + (b/a)^2} \cos^2 B_0} \]

Composite projection design

\[k_1 = k_2 = 0.5 \]

<table>
<thead>
<tr>
<th>Point ID</th>
<th>X m</th>
<th>Y m</th>
<th>m</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>5920651.2700</td>
<td>99866.0575</td>
<td>1.00012</td>
<td>1.190464</td>
</tr>
<tr>
<td>S</td>
<td>562461.5409</td>
<td>50696.4382</td>
<td>1.00015</td>
<td>0.568252</td>
</tr>
<tr>
<td>W</td>
<td>569661.5401</td>
<td>-134916.9661</td>
<td>1.00015</td>
<td>-1.510175</td>
</tr>
<tr>
<td>E</td>
<td>569698.4608</td>
<td>126887.4629</td>
<td>1.00019</td>
<td>1.528767</td>
</tr>
</tbody>
</table>

Point ID \[B_0 = \frac{B_L + B_S}{2} \] \[L_0 = \frac{L_W + L_E}{2} \]

change coefficients \(k_1 \) and \(k_2 \) until \(m_N = m_N \)

change \(B_0 \) until \(m_N = m_N \)

change \(L_0 \) until \(m_W = m_E \)
Design principles for a map of isocols for a geodetic projection

\[m = m_0 + \frac{k_1 \Delta X^2 + k_2 \Delta Y^2}{2m_0 R_0^2} \]

\[\Delta X = X - X_0 \]
\[\Delta Y = Y - Y_0 \]
\[R_0 = \frac{c}{Y_0} \]

About 30% of the territory is represented with distortions less than 1/5000 and about 90% of the area has distortions less than 1/2500. Only negligible part of the territory has distortions about 1/2000.
Discussion and conclusions

• Only one general form of equation for calculation coordinates in any projection

• No problems with transformation issue between coordinate systems

• Management of a character of distortions in a projection by a map of isocols
Thank you for attention!!!

- Questions and discussion