Investigation of Attitude Sensors for Hydrographic Applications
– GNSS, Motion Sensor and Low Cost Sensors
-First results-

Volker Böder

Motivation

- Especially multibeam however also singlebeam applications need high reliable attitude determination
 - Direct referencing with RTK: heading, roll, pitch
 - Indirect referencing with tides: heave, roll, pitch
- Challenge: dm-accuracy in shallow waters
 - Wreck search, feature detection
 - Archaeology
 - Exploration
- Different sensor technology is available
 - GNSS, IMU (AHRS, INS)
- Missing: control of attitude determination
 - System calibration in MBES before measurement
 - SBES?
Equipment

- **Positioning and Attitude Determination**
 - Leica: System 500 (RTK)
 - Javad: JAVAD 4 Gyro (GNSS Positioning and Attitude)
 - Geo++ GNSS-Software GNATTI
 - IXSEA: OCTANS III (fiberoptic IMU)

- **Echosounder Reson SeaBat 8101**

Photo from P. Andreec

Archaeology under water

- „Mäuseturm“ in Güttingen, CH
- Cooperation with Archaeologists from Kanton Thurgau
- Manmade structure (completely?), probably Middle Ages
Research/Exploration

- Cooperation with „Institut für Seenforschung“, Lake Constance
 - With Dr. Martin Wessels
 - Methane gas?
Advantages/Disadvantages GNSS/IMU

<table>
<thead>
<tr>
<th>GNSS</th>
<th>Inertial Measurement Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ no drift</td>
<td>+ high data rate</td>
</tr>
<tr>
<td>+ long baseline: high accuracy</td>
<td>+ usually small unit</td>
</tr>
<tr>
<td>+ price ?</td>
<td></td>
</tr>
<tr>
<td>- Short baseline: low accuracy</td>
<td>- Drift</td>
</tr>
<tr>
<td>- Low data rate (usually 10 Hz, but increasing)</td>
<td>- Influences by high dynamics</td>
</tr>
<tr>
<td>- signal shading (installation on board, buildings, cranes, quay walls …)</td>
<td>- Location on board should be near gravitational center</td>
</tr>
</tbody>
</table>
Investigations

- Project Norwegian Gem
 - GNSS
 - Motion sensor without GNSS support
 - Motion sensor with GNSS support
- Comparison GNSS – Motion Sensor
- Investigation of “just another sensor”
- Investigation Low Cost Sensor

Project Norwegian Gem

- Goal of the Project
 - Shipping of luxury ship backwards along the river Ems
 - Length 300 m, width 32 m
 - High accuracy needed for precise navigation

- Project carried out by
 - HydroSupport: Bernd Koop
 - LGN: Cadastre and Land Surveying Authority of Lower Saxony
 - Investigation of attitude sensors within diploma thesis at HCU
 - Mario Röttger
Accuracy of Attitude Sensors

- **GNSS (geodetic equipment)**
 - Depending on length of baseline between antenna
 - Approximation for accuracy
 - $0.3\ [\text{deg} \cdot \text{m}] / \text{Length} [\text{m}]$ for Heading ($300 \text{ m} : 0.001^\circ$)
 - $0.5\ [\text{deg} \cdot \text{m}] / \text{Length} [\text{m}]$ for Roll and Pitch
 - Higher accuracy with more sensors

- **IXSEA OCTANS III**
 - Heading
 - 0.1° secant latitude (HH: 0.17°)
 - Drift 0.05°/h
 - Roll/Pitch
 - 0.01°

- **IXSEA HYDRINS**
 - Heading
 - 0.02° secant latitude (HH: 0.034°)
 - Drift 0.01°/h
 - Roll / Pitch: see OCTANS III
Project Norwegian Gem

Difference between GPS-ATTI, HYDRINS and OCTANS

- Motion Heading
 - 1.3° in 14 min

- Differences
 - GPS – OCTANS
 - Noise <0.1°
 - Drift 0.1° / 14 min!
 - GPS – HYDRINS
 - +/- 0.02°
 - Drift 0.01°/14min => 0.04°/h
Project Norwegian Gem

- Motion in Heading
 - 2 circles in 36 min
- Rate of Turn
 - Varies between -0.25°/s to -0.45°/s

- Differences between
 - GPS-ATTI and OCTANS
 (unsupported IMU)
 - -0.6° to 0°
 - Drift 0.5°/5 min!
 - GPS-ATTI and HYDRINS
 (IMU supported by GNSS)
 - +/- 0.1°
Conclusions Project Norwegian Gem

- HYDRINS operates within specifications
- OCTANS III didn’t work within the specifications, as expected before
 - Replaced by another OCTANS III from IXSEA
- GPS supported IMU work properly and reliable
- GPS best method in this case, because of the long baseline (250 m)

- Shipping successful !!

Investigation GNSS – OCTANS III (new)

“Cloverleaf” manoeuvre

- Heading 0° to 360°
- Roll -6° to +2°
- Pitch -1° to +3°
“Cloverleaf” manoeuvre

Heading

RoT < 5°/s
⇒ within specifications

RoT > 5°/s
⇒ increasing errors?

Drift after manoeuvre?

Additional investigation will follow

“Investigation GNSS – OCTANS III (new)

“Cloverleaf” manoeuvre

Roll

⇒ within specifications

(of GNSS-Attitude)
Conclusion GNSS – OCTANS III (new)

“Cloverleaf” manoeuvre

Roll and Pitch
within specifications of GNSS-Attitude

Heading
shows increasing errors starting from
rate of turn of ca. 5°/s

Just another sensor

- Project Lake Constance
- Investigation
 - Geo++ - GNATTI
 - IXSEA OCTANS
 - SENSOR ?? (anonymous)
 - Sensor sold with new echosounder (not HCU!)
 - Installed as good as possible, but not in gravitation center
 - Installation was not optimal !
 - Announced accuracy 0.3° in roll and pitch
 - First result: be aware of + and – declaration!
 - Offsets and
 - Angle definition
Results OCTANS - ??

- Roll
 - -1° to +4°
 - Rate of Roll: ca. +/- 2°/s
 - Std.dev. dROLL: 0,35°

- Pitch
 - -0,5° to +1°
 - Rate of Pitch: ca. +/- 0,8°/s
 - Std.dev. dROLL: 1,5°
Low-Cost Sensor XSENS MTi

- Diploma Thesis Michael Barth
- Xsens MTi consists of
 - 3 fiber optical gyro, 3 accelerometer and 3 magnetometer
 - MEMS-components (micro electronic measuring system)
 - output in quaternions and/or Euler

<table>
<thead>
<tr>
<th></th>
<th>Heading</th>
<th>Roll / Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Accuracy</td>
<td><1 deg</td>
<td><0.05 deg</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.05 deg</td>
<td>(for ±50 deg amplitude)</td>
</tr>
<tr>
<td>Range No Limitation</td>
<td>180 deg to 180 deg</td>
<td>0.05 deg</td>
</tr>
<tr>
<td>Dynamic Accuracy</td>
<td>2 deg RMS</td>
<td></td>
</tr>
</tbody>
</table>

Tests on Survey Launch Level-A

Xsens MTi

Performance

IxSea Octans III

JAVAD 4 Gyro
Geo++ GNATTI
Tests on Survey Launch Level-A

Comparison between Octans III and MTi

Mean difference: 1.8° +/- 0.8°

Conclusions XSENS MTi

<table>
<thead>
<tr>
<th>Messung</th>
<th>Heading</th>
<th>Pitch</th>
<th>Roll</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std.</td>
<td>Range</td>
</tr>
<tr>
<td>C2</td>
<td>2.4°</td>
<td>±0.9°</td>
<td>13.5°</td>
</tr>
<tr>
<td>C3</td>
<td>1.5°</td>
<td>±0.7°</td>
<td>6.8°</td>
</tr>
<tr>
<td>C4</td>
<td>1.8°</td>
<td>±0.8°</td>
<td>6.8°</td>
</tr>
</tbody>
</table>

- within specifications regarding std. dev., but several outliers
 - (see the range)

→ heading: homogeneous magnetic surrounding necessary
→ sometimes deviations >40° in heading, not shown here
Conclusions

• Each motion sensor has own error characteristics, depending on
 – dynamics
 • of the ship
 • of the location on board the ship.
 – Vibrations on board
 – geographical latitude
 – Magnetic influences (In case of use of magnetometer inside the motion sensor)

• Reducing the error
 – GNSS support / use
 – System calibration before measurement (!),
 – calibration of motion sensors (?)

• Take care of all sensors!

• First results inside other projects
 – Goal: systematic investigation / calibration procedure

IHSC2007
Add ons

2nd IHSC 2008

- Addressed to interested students
- 18.08.-30.08.2008 at the Schlei
- Near ancient Viking Metropolis Hedeby (Haithabu)
- No participation fees
 - accommodation must be paid
 - bed for 6 Euros in a Danish Rowing Club with kitchen
- Contact to Producers, Companies and Archaeologists
- Searching for
 - Wrecks (ships and planes), underwater archaeological sites, morphological structures
Participants of IHSC 2007

Prof. Dr.-Ing. V. Böder
HafenCity University Hamburg
Department of Geomatics
volker.boeder@hcu-hamburg.de

Welcome to the
- IHSC at the Schlei (18.08.-30.08.2008)
- in the course M.Sc. Hydrography (application until July, 15th, 2008)?
Project Norwegian Gem

• Investigation of Attitude Sensors
 – GPS-Attitude
 • 4 GPS-antennae
 – IMU with GPS-Support
 • IXSEA HYDRINS
 – IMU without GPS-Support
 • IXSEA OCTANS III
 • Known before the project:
 – Showing abnormal drifting in hydrographic measurement
 => Investigation necessary