

HCU HafenCity Universität	it
Motivation	
 Especially multibeam however also singlebeam applications need high reliable attitude determination Direct referencing with RTK: heading, roll, pitch Indirect referencing with tides: heave, roll, pitch Challenge: dm-accuracy in shallow waters Wreck search, feature detection Archaeology Exploration Different sensor technology is available GNSS, IMU (AHRS, INS) Missing: control of attitude determination System calibration in MBES before measurement SBES? 	
2008/06/17 Investigation of Attitude Sensors for Hydrographic Applications 2 V. Böder 2	

Advantages/Disadvantages GNSS/IMU						
GNSS + no drift + long baseline: high accuracy + price 2	Inertial Measurement Units + high data rate + usually small unit					
 Short baseline: low accuracy Low data rate (usually 10 Hz, but increasing) signal shading (installation on board, buildings, cranes, quay walls) 	 Drift Influences by high dynamics Location on board should be near gravitational center 					
2008/06/17 Investigation of Attitude Sensors for Hydrographic Applications V. Böder						

and the second s	2		- And	-	HCU Har	fenCity Universi mburg
Tests on Survey Launch Level-A						
Xsens MTi		IxSea Octans III	nance	JAN Geo	/AD 4 Gy +++ GNAT	
Heading Static Accuracy Resolution Roll / Pitch Static Accuracy Range No limitation Resolution Presolution Dynamic Accuracy	<1 deg 0.05 deg (for 500 deg amplitude) (180 deg 10 Sto deg) 0.05 deg 2 deg RMS	Heading Accurscy Resolution Setting time (static conditions) Full accurscy setting time (all conditions) Heave / Surge / Sway Accurscy Roll / Plich Dynamic accurscy Range Resolution	0.1 deg securi laritude 0.01 deg < 1 min < 5 min 5 cm or 5% (Whichever is highest) Set-up free (SATE-HEAVE P0) 0.01 deg (for 5%0 deg amplitude) No limitation (-180 deg to 180 deg) 0.001 deg	Modus Kurs (Heading) Stampfen (Pirch) Rollen (roll) Genanigkeit 2D Genanigkeit Höhe	Navigation 0.06 deg ⁺ 0.12 0.15 deg ⁺ 0.29 0.25 deg ⁺ 0.20 0.5 1 m 0.5 1 m	Positionierung deg '' 0.10 deg ''' deg '' 0.10 deg ''' deg '' : 0.25 deg ''' 1 5 cm 2 5 cm
008/06/17	Investigatio	on of Attitude Sensor	s for Hydrographi öder	c Application	าร	2

HCU HafenCity Universität									
Conclusions XSENS MTi									
Massung	Heading			Pitch			Roll		
Messung	Mean	Std.	Range	Mean	Std.	Range	Mean	Std.	Range
C2	2,4°	±0,9°	13,5°	0,6°	±0,8°	3,3°	1,7°	±0,3°	4,4°
C3	1,5°	±0,7°	6,8°	0,7°	±0,1°	1,9°	1,5°	±0,3°	2,6°
C4	1,8°	±0,8°	6,8°	0,4°	±0,6°	1,3°	1,8°	±0,2°	2,7°
 within specifications regarding std. dev., but several outliers (see the range) → heading: homogeneous magnetic surrounding necessary → sometimes deviations >40° in heading, not shown here 									
2008/06/17 Investigation of Attitude Sensors for Hydrographic Applications V. Böder							30		

HCU HafenCity Ur	niversität						
Conclusions							
 Each motion sensor has own error characteristics, depending on dynamics of the ship of the location on board the ship. Vibrations on board geographical latitude Magnetic influences (In case of use of magnetometer inside the motion sensor))						
 Reducing the error GNSS support / use System calibration before measurement (!), calibration of motion sensors (?) 							
 Take care of all sensors ! First results inside other projects Goal: systematic investigation / calibration procedure 							
2008/06/17 Investigation of Attitude Sensors for Hydrographic Applications V. Böder	31						

