

Some Facts about Multipath

Multipath error is a dominant error source connected with GPS positioning.

Positioning the antenna away from nearby objects can minimize the multipath effect.

Multipath arising from below the antenna can be reduced by using ground planes.

Some Facts about Multipath

Multipath distorts the C/A-code and P-code modulations, as well as the carrier phase observations.

Pseudorange multipath behaves similarly to that of carrier phases, except that the variation is larger by several orders of magnitude.

Some Facts about Multipath

The impact of multipath signals on the pseudorange and carrier phase observation is dependent upon a variety of factors:

- ► the distance of the reflecting object from the antenna.
- ► the antenna attenuation characteristics.
- ► the capacity of the receiver to mitigate multipath.

Research Motivation

Permanent GNSS sites are usually located on open field. Therefore, the ground is the only source of multipath.

We would like to examine the effects of the antenna height on pseudorange multipath in a variety of GPS antenna types.

,	The Multipath Computation
$MP_{P1} = F$	$P1 - 4.0915\Phi_1 + 3.0915\Phi_2 +$
	$4.0915(\lambda_1 N_1 + MP_{\Phi_1}) - 3.0915(\lambda_2 N_2 + MP_{\Phi_2})]$
$MP_{P2} = I$	$P2 - 5.0915\Phi_1 + 4.0915\Phi_2 +$
	$5.0915(\lambda_1 N_1 + MP_{\Phi_1}) - 4.0915(\lambda_2 N_2 + MP_{\Phi_2})]$
MP_{P_1}, MP_{P_2}	- Pseudorange multipath (+ receiver noise)
P1, P2	- Pseudorange data
Φ_1, Φ_2	- Carrier phase data
N_1, N_2	- Integer ambiguity
λ_1, λ_2	- Carrier phase wavelength
MP_{Φ_1}, MP_{Φ_2}	- Carrier phase multipath

The Multipath Computation $MP_{P1} = P1 - 4.0915\Phi_1 + 3.0915\Phi_2 + \left[4.0915(\lambda_1N_1 + MP_{\Phi_1}) - 3.0915(\lambda_2N_2 + MP_{\Phi_2})\right]$ $MP_{P2} = P2 - 5.0915\Phi_1 + 4.0915\Phi_2 + \left[5.0915(\lambda_1N_1 + MP_{\Phi_1}) - 4.0915(\lambda_2N_2 + MP_{\Phi_2})\right]$ The impact of the multipath on the carrier phase is insignificant in comparison to the multipath pseudorange, and can therefore be ignored.

Experiment Description

► The same antennas was set in three successive days (GPS day 301 to day 303 in 2007) at the same time over the same point, and each day the antenna phase center was positioned at different heights –

about 1.60m, 0.9m and 0.2m.

- ► The selected station was located on a flat open field.
- ► Three types of GPS antennas were examined:
 - * Ashtech DM Choke Ring
 - * Ashtech Geodetic L1/L2
 - * AeroAntenna Geodetic L1/L2
- Three Ashtech Z-Surveyor receivers were used in all the experiments.
- The observations (C1, P1, P2, L1 and L2) were measured during the same time every day.

The Examined Antennas

- <u>ASH DM Choke Ring</u> a high cost antenna, designed to mitigate multipath efficiently, standard in permanent GPS sites.
- <u>ASH Geodetic L1/L2</u> microstrip patch antenna, with a medium size ground plane, typically used for geodetic surveying.
- <u>AER Geodetic L1/L2</u> geodetic antenna with a small sized ground plane, typically used for RTK surveying.

The Data Analysis Process

- The analysis was carried out on RINEX files using TEQC software.
- Three types of pseudorange multipath were calculated: MP_{C1}, MP_{P1} and MP_{P2}, for each of the satellites in view.
- ► Day 303 was used as basis for common time scale.
- ► The common time was 152 minutes.
- ► 8 satellites were used.

The Data Analysis Process

Since the pseudorange multipath is a series of residuals, the total effect of pseudorange multipath can present by using the quadratic form:

$$\varphi = \sum \left(M P_{P1} \right)^2$$

As ϕ becomes smaller the effect of the pseudorange multipath on the code observations is reduced, and vice versa.

Therefore, testing the quadratic form of the same satellite in the same time on different days enables a numerical comparison of the pseudorange multipath effects.

► The quadratic form of the multipath residuals on the C/A code for eight GPS satellites in common time scale, in square meter units.

			GPS day										
PRN		301	302	303	301	302	303	301	302	303	common		
	height	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	time		
	Ant.	Ash. D	M Choł	ce ring	Ash. (Ash. Geodetic L1/L2			eodetic	L1/L2	[minutes]		
4		3.64	2.99	1.10	3.74	3.10	0.90	16.36	8.45	1.41	79		
8		10.18	2.41	1.77	6.44	6.55	1.72	13.10	5.89	2.13	99		
9		8.60	4.14	1.92	8.29	6.67	1.16	14.72	9.39	2.44	123		
12	cod	4.05	2.69	1.47	11.10	7.53	1.61	17.26	6.54	1.54	92		
15	C/A	1.41	1.23	1.36	3.04	3.18	1.88	2.42	2.19	0.88	149		
17	Ŭ	1.22	1.58	1.25	2.77	2.25	1.41	4.95	2.52	1.45	152		
26		1.70	1.45	1.26	3.40	3.44	1.76	5.32	2.94	1.16	152		
28		7.58	7.18	1.94	11.73	11.67	2.30	18.62	9.47	1.83	139		

Ther a	re is a ntenn	dram a set	natic ups f	T reduc for <u>PI</u>	he I	Res ofφ1	ults betwo	een h	igher	and	lower
					0	SPS day	y				
PRN		301	302	303	301	302	303	301	302	303	common
	height	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	time
	Ant.	Ash. DM Choke ring			Ash. C	Jeodetic	L1/L2	Aer. G	eodetic	L1/L2	[minutes]
4		3.64	2.99	1.10	3.74	3.10	0.90	16.36	8.45	1.41	79
8		10.18	2.41	1.77	6.44	6.55	1.72	13.10	5.89	2.13	99
9		8.60	4.14	1.92	8.29	6.67	1.16	14.72	9.39	2.44	123
12	Cod	4.05	2.69	1.47	11.10	7.53	1.61	17.26	6.54	1.54	92
15	N/A	1.41	1.23	1.36	3.04	3.18	1.88	2.42	2.19	0.88	149
17	ບ	1.22	1.58	1.25	2.77	2.25	1.41	4.95	2.52	1.45	152
26		1.70	1.45	1.26	3.40	3.44	1.76	5.32	2.94	1.16	152

There is a minor reduction of φ between higher and lower antenna set ups for <u>PRN26</u>.

		GPS day										
PRN		301	302	303	301	302	303	301	302	303	common	
	height	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	time	
	Ant.	Ash. DM Choke ring A:			Ash. (Ash. Geodetic L1/L2			eodetic	[minutes]		
4		3.64	2.99	1.10	3.74	3.10	0.90	16.36	8.45	1.41	79	
8		10.18	2.41	1.77	6.44	6.55	1.72	13.10	5.89	2.13	99	
9	e.	8.60	4.14	1.92	8.29	6.67	1.16	14.72	9.39	2.44	123	
12	cod	4.05	2.69	1.47	11.10	7.53	1.61	17.26	6.54	1.54	92	
15	YA	1.41	1.23	1.36	3.04	3.18	1.88	2.42	2.19	0.88	149	
17	<u> </u>	1.22	1.58	1 25	2.77	2.25	1.41	4.95	2.52	1.45	152	
26		1.70	1.45	1.26	3.40	3.44	1.76	5.32	2.94	1.16	152	
28		7.58	7.18	1.94	11.73	11.67	2.30	18.62	9.47	1.83	139	

► The table shows the clear influence of GPS antenna height on pseudorange multipath residuals without correlation to the antenna type. The multipath residuals level grows smaller when the antenna height is lower.

					C	3PS day	y	GPS day											
PRN		301	302	303	301	302	303	301	302	303	common								
	height	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	time								
	Ant.	Ash. D	M Choł	ce ring	Ash. (Ash. Geodetic L1/L2			Aer. Geodetic L1/L2										
4		3.64	2.99	1.10	3.74	3.10	0.90	16.36	8.45	1.41	79								
8		10.18	2.41	1.77	6.44	6.55	1.72	13.10	5.89	2.13	99								
9	e e	8.60	4.14	1.92	8.29	6.67	1.16	14.72	9.39	2.44	123								
12	cod	4.05	2.69	1.47	11.10	7.53	1.61	17.26	6.54	1.54	92								
15	C/A	1.41	1.23	1.36	3.04	3.18	1.88	2.42	2.19	0.88	149								
17	Ŭ	1.22	1.58	1.25	2.77	2.25	1.41	4.95	2.52	1.45	152								
26		1.70	1.45	1.26	3.40	3.44	1.76	5.32	2.94	1.16	152								
28		7.58	7.18	1.94	11.73	11.67	2.30	18.62	9.47	1.83	139								

The Results

► As expected the choke ring antenna had the best performance. It mitigated multipath signals reflected from the ground in a better way, relative to the two other antennas.

			\sim		0	PS day	y				
PRN		301	302	303	301	302	303	301	302	303	common
	height	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	time
	Ant.	Ash. D	M Choł	ce ring	Ash. (Ash. Geodetic L1/L2			eodetic	[minutes]	
4		3.64	2.99	1.10	3.74	3.10	0.90	16.36	8.45	1.41	79
8		10.18	2.41	1.77	6.44	6.55	1.72	13.10	5.89	2.13	99
9	8	8.60	4.14	1.92	8.29	6.67	1.16	14.72	9.39	2.44	123
12	cod	4.05	2.69	1.47	11.10	7.53	1.61	17.26	6.54	1.54	92
15	C/A	1.41	1.23	1.36	3.04	3.18	1.88	2.42	2.19	0.88	149
17	Ŭ,	1.22	1.58	1.25	2.77	2.25	1.41	4.95	2.52	1.45	152
26		1.70	1.45	1.26	3.40	3.44	1.76	5.32	2.94	1.16	152
28		7.58	7.18	1.94	11.73	11.67	2.30	18.62	9.47	1.83	139

	-			in an	lenna	heig	nts th	ie K I	K an	ltenna	a nad u	
orest	perio	rman	ce.									
					6	PS day	v					
PRN		301	302	303	301	302	303	301	302	303	common	
	height	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	time	
	Ant.	Ash. D	M Choł	e ring	Ash. C	Ash. Geodetic L1/L2			Aer. Geodetic L/L2			
4		3.64	2.99	1.10	3.74	3.10	0.90	16.36	8.45	1,41	79	
8		10.18	2.41	1.77	6.44	6.55	1.72	13.10	5.89	2.13	99	
9		8.60	4.14	1.92	8.29	6.67	1.16	14.72	9.39	2.44	123	
12	cod	4.05	2.69	1.47	11.10	7.53	1.61	17.26	6.54	1.54	92	
15	C/A	1.41	1.23	1.36	3.04	3.18	1.88	2.42	2.19	0 88	149	
17	Ŭ	1.22	1.58	1.25	2.77	2.25	1.41	4.95	2.52	1.45	152	
26		1.70	1.45	1.26	3.40	3.44	1.76	5.32	2.94	1.16	152	
20		7.58	7.18	1.04	11.73	11.67	2 30	18 62	0.47	1.83	139	

► For the low antenna height the RTK antenna performance, surprisingly, was equal to that of the choke ring and geodetic antennas.

			GPS day															
PRN		301	302	303	301	302	303	301	302	303	common							
	height	1.6m	0.9m	0.2m	1.6m	0.9m	0.2m	1.6m	0.9m	02m	time							
	Ant.	Ash. D	M Choi	ke ring	Ash. (Ash. Geodetic L1/L2			Geodetic	L1/L2	[minutes]							
4		3.64	2.99	1.10	3.74	3.10	0.90	16.36	8.45	1.41	79							
8		10.18	2.4	1.77	6.44	6.55	1.72	.3.10	5.89	2.13	99							
9		8.60	4.14	1.92	8.29	6.67	1.16	4.72	9.39	2.44	123							
12	cod	4.05	2.69	1.47	11.10	7.53	1.61	7.26	6.54	1.54	92							
15	C/A	1.41	1.23	1.36	3.04	3.18	1.88	2.42	2.19	0.88	149							
17	Ŭ	1.22	1.58	1.25	2.77	2.25	1.41	4.95	2.52	1.45	152							
26		1.70	1.45	1.26	3.40	3.44	1.76	5.32	2.94	.16	152							
28		7.58	7.18	1.94	11.73	11.67	2.30	18.62	9.47	1 83	139							
				∇T			$\overline{\sqrt{7}}$											

Conclusions

► The clear influence of GPS antenna height on the pseudorange multipath residuals, with no correlation to the antenna type was shown.

► For all codes, the multipath residuals level grows smaller as the antenna height decreased.

► The choke ring antenna had the best performance in mitigating multipath signals reflected from the ground.

► For high and medium antenna heights, the RTK antenna had the worse performance among the antennas examined.

► For the lower antenna height the RTK antenna performance equaled that of the choke ring and geodetic antennas.

