

Content

- Introduction
- 4D Land Administration
- Example: Registration of utilities
- Spatial Information Infrastructure
- Case study
- Conclusion

FIG

Registration of utilities

Why utilities?

- •Main objects in LA with 4D characteristic
- •Utility networks can cross many parcels
- •Current LA systems have shown limitation to manage utilities
- •Different applications in practice in different LA systems
 - not registered
 - •registered as separate real property
 - •registered as restrictions with their own geometry

SII – Standardization

The Land Administration Domain Model (LADM) is an attempt to achieve standardisation in the area of LA data

Case Study-Implementation in DBMS

3D coordinates for 2D parcels were obtained in order to relate the parcel data set to the underground networks.

Data sets were implemented in Oracle Spatial (OS)

•Geometry model: (SDO_GEOMETRY) of OS		Content of Pipeline table in OS	
•Tables were created to store information	Column Name	Datatype	Description
of utilities •Metadata was maintained in OS •Spatial index was created on the tables	IDBUIS	NUMBER(11)	Primary Key
	AANTAL	NUMBER(11)	Pipeline Number
	IDBEHEERDE	NUMBER(11)	Owner number
	IDPRODUCT	NUMBER(11)	Material
	IDSPANNING	NUMBER(11)	Pressure
	IDSTATUS	NUMBER(11)	Status
	PIB	NUMBER(11)	Licence number
	AANVULLEND	CHAR(50)	Additional
	STEUNTEKST	CHAR(50)	Support text
	TMIN	VARCHAR(7)	Build date
	TMAX	VARCHAR(7)	Deleted date
	GEOM	MDSYS.SDO_GEOMETRY	Gtype=3002 (3D line)
FIG		E.G	

 $\hfill\square$ From technical point of view, implementation can be realized with two approaches

•use a 4D space-time topological structure (medium-long term)
This approach guarantees the consistency
4D topological structures are not yet available in the current software packages, R&D is needed

•store space and time information separately no guarantee for consistency additional constraints can be put the model to obtain the partition

□ In this study, extension of LADM for utilities was applied to case. The case study has shown that separate 3D+time attribute are sufficient for the selected case.

