Terrestrial laser scanning applied for reverse engineering and monitoring of historical buildings

I. Milev & L. Gründig
Technet GmbH

Overview

- Laser data processing
 - Pointcloud registration
 - General Spline Definition
 - Interpolation function
- Rehabilitation works and reverse engineering
 - Represent on several projects
- Conclusions
3D Laser scanning technology to acquire spatial data

- 3D model
- Construction drawings
- Orthoimages
- Especially for historical architecture objects without construction records

Laser data processing

- Automated plane detection based Registration
 - Detect planes in the image matrices of the scans (scanner system)
 - Finding identical planes for the registration
 - Calculate the interconnected transformation with reliability and quality values
Plane segmentation
- Detected planes

Terrestrial Laserscanning applied for Reverse Engineering and Monitoring of Historical Buildings

Fitting control
- Orientated Scans

Terrestrial Laserscanning applied for Reverse Engineering and Monitoring of Historical Buildings
Laser data processing

- Depending on the accuracy requirements the processing work can be accomplish:
 - On the basis of the raw point cloud
 - On the basis of the surface model
Interpolation function

× General Spline Definition

× Searching for a spline function

× Base

\[g : I \rightarrow \mathbb{R} \]

\[\delta^m / L_k (u_j) = \delta_{j,k}, \quad j = 1, m \quad (3) \]

\[\| e_k (t) \| \leq \alpha \exp (- \beta (t - n_k)) \quad (1) \]

\[f = \sum L_j g_j \quad (2) \]

Spline

Terrestrial Laserscanning applied for Reverse Engineering and Monitoring of Historical Buildings

FIG Working Week 2008
Stockholm, Sweden 14-19 June 2008
Surface modelling
Find the shape for an accurate model

Rehabilitation works and Reverse Engineering

- Parish hall
- Church ruin Betanien
- New Palace Sanssouci
- Public library of Berlin
Parish hall

- Cottbus
- 15 years unused
- Complete renovation for councillor
- No drawings for inner cylindrical roof
- Now generate data of the actual state for the architectural planning needs

<table>
<thead>
<tr>
<th>Scanning Station</th>
<th>Points [Million]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>25</td>
</tr>
<tr>
<td>Back</td>
<td>25</td>
</tr>
<tr>
<td>Left</td>
<td>20</td>
</tr>
<tr>
<td>Right</td>
<td>20</td>
</tr>
<tr>
<td>Corner 1</td>
<td>22</td>
</tr>
<tr>
<td>Corner 3</td>
<td>22</td>
</tr>
</tbody>
</table>
Objectives

- Create sections
- Develop a colour model with free hand fotos
- Orthophotos

Church ruin Betanien

- Berlin Weissensee
- Built 1900-1902
- Destroyed WW2
- 65m high
- Obtain actual dimensions and shapes
Terrestrial Laserscanning applied for Reverse Engineering and Monitoring of Historical Buildings

- Link point cloud and free hand photo
- Also for historical photos
- Animation

- Line drawings
- Automated sections with step of 50 cm
New Palace in Sanssouci

- Castle, park Sanssouci in Potsdam
- Built between 1763 and 1769

Old anchor construction has to be replaced.

Prefabricated bended beams are to be fitted inside the architraves.
Terrestrial Laserscanning applied for Reverse Engineering and Monitoring of Historical Buildings

Prussian Cultural Heritage

- Ortho images
 - Roof structure
- Facade
- Brickwork from fundament

FIG Working Week 2008
Stockholm, Sweden 14-19 June 2008
Staatsbibliothek zu Berlin

- Since 1661 (house Unter den Linden since 1914)

- New building of central reading hall will be finished till 2009

Time stamp based data acquisition

- Two epoches are captured

- Volume calculation for the building pit—excavation volume
Conclusion

- Construction drawings based on new reverse engineering techniques
- Different modeling strategies for different accuracy levels
- 3D models for precise volume determination, acoustic calculations and epoch based documentation of the object conditions – preserving evidence

Thank you