Swedish Standard for Geographic Information on Water System

Jakob Nisell
Swedish University of Agricultural sciences

SMHI
Lake and river registry network
Etc.

Sw Land Survey
Hydrography, geometry etc.

Sw Geological survey
groundwater
spring
Etc.

Environmental Data host
SLU – water Chemistry, Biology
Fisheries Dept. – fauna
Etc.

Municipalities, country Council
proviagningsplatser

Water district authorities
Ecological status etc.
Etc.

Water power authorities
Water discharge
waterlevels

Sw Maritime Administration
Ship lanes
Etc.
Participants

- SIS, Swedish Standard Institute
- Swedish Land Survey,
- Elforsk
- Water District Authorities
- Swedish Environmental Protection Agency
- Swedish Maritime Administration
- Swedish Association of Local Authorities and Regions
- Swedish Geological Survey
- Swedish Meteorological and Hydrological Institute, SMHI

Scope

- supply a framework for information content and structure
- supply a common set of terms and concepts
- facilitate exchange of data between organizations
- facilitate consolidation of data from several producers
- simplify development of software applications
- make data sampling more cost effective
- simplify generalizations between different scales
- supply a system independent exchange format
Content of the standard

- Definitions
- Hierarchy
- Network
- Hierarchy network
- Identifiers
- Versioning
- Geometry ISO 19107 and GML
- Temporal ISO 19108
- Metadata ISO 19115
- Application schema uses ISO 19109
- Data exchange XML (ISO 19118) and GML (ISO 19136)

Object oriented approach

Objects are of a defined feature class

Lakes
River Reaches
Sampling Points
Catchment Areas
Surface Water Systems
Object oriented approach

Attributes
- Identity
- Name
- Geometry
- Etc.

Relation to other objects
Ex) Part of a system
Or “Water received from”

Logical network

✓ Each feature is described as a node referenced by its identity UUID
✓ Each feature can be connected to other using a link
✓ Not dependent on geometry
✓ Simple to apply in database tables and queries
Node link system

A node can be a
1. Surface water body
2. Water location
3. Hydrological area
4. Surface water complex
5. A complex of nodes of type 1-4
 • A link is the logical connections of nodes.
Example of network implementation

<table>
<thead>
<tr>
<th>Link</th>
<th>Node</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUID</td>
<td>startnode</td>
<td>endnode</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data exchange

Based on all features
Unique ID UUID
Uses XML/GML
XML and GML schemas are freely available
Possibility to extend XML-GML schemas

Dataset

Sends an original dataset
<dataset>
 <WS_Lake uuid=EISK-3432-AKEK-3113>
 <PhenomenonIdentity>
 "SE674383-152838"
 </PhenomenonIdentity>
 <name>'Storsjön' </name>
 <area>26.5</area>
 <geometry></WS_Lake>
 </dataset>
Sends a modification on the area of Storsjön

```xml
<update>
  <modify>
  <WS_Lake uuid=EISK-3432-AKEK-3113>
    <area>23.8</area>
  </WS_Lake>
  </modify>
  </update>
```

Modify (add)

Send an update adding a new lake to the dataset.

```xml
<update>
  <add>
  <WS_Lake uuid=BKKE-2232-GTEK-8923>
    <PhenomenonIdentity>
      "SE654713-147901"
    </PhenomenonIdentity>
    <name>'lillsjön'</name>
    <area>3.2</area>
    <geometry>.....
  </WS_Lake>
  </add>
  </update>
```
Modify (delete)

Sends an update deleting a lake from the dataset

```xml
<update>
  <delete uuidref="EISK-3432-AKEK-3113" />
<update>
```

Advantages using a common XML-schema

- Water chemistry, identities, topology, network, geometry, morphometry, water flow can be contributed from different organisations.
- Data can be distributed as webservices
- A unique ID UUID is used as a key
conclusions

- Standardization – cooperation
- Standardization – takes time
- Object orientated – takes time
- Lots of work to build datasets
 - 100 000 - 300 000 lakes
 - 500 000 km river
- Growing demand for "intelligent" datasets
- Possibility to chose ambition

THANK YOU!
For more information
www.stanli.se