Accuracy of GPS Positioning in the Presence of Large Height Differences

by
D. Ugur Sanli &
F. Kurumahmut

14-19 June 2008 FIG Working Week 2008, Stockholm, Sweden

Background

- Large height difference between baseline points
- First mentioned by Gurtner et al. 1989
- Shön 2007 developed a correction model for landslides
- We study the effect in detail
 - for ‘observing session duration’
 - make inferences for ‘GPS accuracy studies’
GPS Data

- SCIGN and other networks in the region
- Through SOPAC Archives
- RINEX format, 30 sec sampling rate, 15° elevation angle
- JPL
 - Precise orbits
 - Clock errors
 - Earth orientation parameters
GPS Software

- Developed by the NASA
 - GIPSY OASIS II
- Precise Point Positioning (PPP) – Zumberge et al. 1997
 - Differential PPP; assumed to be equivalent to ‘Relative Positioning’
 - Range of Baseline Lengths; 10-15 km
 - Ambiguity Resolution applied (Blewitt 1989)
 - Troposphere: Niell Mapping Func., Random Walk
 - Ionosphere: Lc
 - Ocean Loading: HG Scherneck, M.S. Bos
 - Reference Frame: ITRF 2000

Processing Strategy

- 10 days of data observed in May and June 2003 (GPS days 150 through 159).
- data subdivided into mutually non-overlapping sessions
- observing session \(T (1, 2, 3, 4, 6, 8, 12 \text{ and } 24 \text{ h}). \)
- For each subset of data, PPP applied
- True position from average of 24-h sessions
- Solution RMS for \(n, e, \text{ and } u \) from this true position
- Solution exceeding 3RMS: Outlier
Outlier Statistics

<table>
<thead>
<tr>
<th>T</th>
<th>Theoretical Number of Solutions</th>
<th>North</th>
<th>East</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Used</td>
<td>Rejected</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>6240</td>
<td>5635</td>
<td>548</td>
<td>9.7</td>
</tr>
<tr>
<td>2</td>
<td>3120</td>
<td>3005</td>
<td>94</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>2080</td>
<td>2022</td>
<td>44</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>1560</td>
<td>1546</td>
<td>28</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>1040</td>
<td>1037</td>
<td>15</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>780</td>
<td>763</td>
<td>12</td>
<td>1.6</td>
</tr>
<tr>
<td>12</td>
<td>520</td>
<td>514</td>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>24</td>
<td>260</td>
<td>257</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Solution RMS vs Height Difference

1-h

2-h

3-h
Correlations vs session length

Accuracy Prediction – Eckl et al. 2001

\[S_n(\Delta h, T) = \left[a_n / T + b_n \Delta h^2 / T + c_n + d_n \Delta h^2 \right]^{0.5} \]
Model fit to 6 h solutions

Comparison with Eckl et al. 2001
Practical aspects

- Research software
 - Use min 3 h for flat surfaces
 - Extend measurements up to 12 h for mountainous areas
 - When height difference ~ 1500 m
 - Session length 3 h
 - Confidence level 95%
 - Accuracy ~ 4 cm

Commercial software – 24 h (Sanli et al. 2005)

![Graph showing height repeatability vs. height difference]
Conclusions

- Good for survey planning
 - Network optimization
 - GPS Levelling
- Monitoring studies affected
 - Land slides
 - Volcanoes
 - Tall buildings
 - Dams
 - Bridges etc.
- A new constraint for accuracy assessments
- GPS Accuracy improved in Sanli and Engin 2007!
- Consider unified modeling

Acknowledgements

- NASA/JPL for providing GIPSY
- SOPAC for GPS data and
- FIG Working Week 2008 for the financial support