Core Knowledge in Surveying: Initial Investigations
Steven Frank, USA
sfrank@nmsu.edu

Curriculum development

• A WG 2.1 objective

• What is the core knowledge in a surveying curriculum?
Core knowledge

• Essential knowledge that should be included in survey education study and training

• Used as a basis for developing ideal survey education curriculae

Core knowledge

• Current activities
 – National Council of Examiners for Engineering and Surveying (NCEES)
 – Greenfeld and Potts proposal
 – American Society of Civil Engineers (ASCE)
 – University Consortium for Geographic Information Science (UCGIS)
NCEES Fundamental Knowledge

• A list of knowledge topics provided to those seeking to take the NCEES Fundamentals of Surveying examination (a US licensing requirement)
• Developed by questionnaires sent to licensed surveyors across the US

NCEES Fundamental Knowledge

• 15 topic areas
 – I) Algebra and trigonometry
 – II) Higher mathematics (e.g. calculus)
 – III) Probability, statistics, measurement analysis and adjustment
 – IV) Basic sciences (e.g. physics, geology, etc.)
 – V) Geodesy, astronomy and computations
NCEES Fundamental Knowledge

• 15 topic areas (continued)
 – VI) Computer operations and programming
 – VII) Written communication
 – VIII) Boundary and cadastral law/administration
 – IX) Business law, economics, etc.
 – X) Field data acquisition and reduction

• 15 topic areas (continued)
 – XI) Photo/image acquisition and reduction
 – XII) Graphical communication and mapping
 – XIII) Plane surveying computation
 – XIV) Geographic information science
 – XV) Land development principles
Surveying Body of Knowledge

• Proposed by Greenfeld and Potts (US)

• Based loosely on a combination of the ASCE approach and ABET outcomes measures

Figure 1. The Body of Knowledge for surveying in terms of outcomes.
Surveying Body of Knowledge

• Three breadth outcomes
 – supervision and project management
 – business and public policy and administration
 – role of the leader and leadership principles

Surveying Body of Knowledge

• ABET outcomes
 – a) mathematics and science
 – b) design and conduct experiments
 – c) design a system, component or process
 – d) function on multi-disciplinary teams
 – e) identify, formulate and solve problems
 – f) professional and ethical responsibility
Surveying Body of Knowledge

- ABET outcomes (continued)
 - g) effective communication
 - h) broad education (social science, arts, etc)
 - i) life-long learning
 - j) contemporary issues
 - k) use modern instruments and techniques

ASCE Body of Knowledge

- Published in 2000

- Broad statements of educational areas
ASCE Body of Knowledge

- Areas of knowledge
 - Management
 - Critical Thinking
 - Communication
 - Government
 - Economics and Finance
 - Law
 - Professional Practice and Ethics

UCGIS Body of Knowledge

- Published in 2007

- Specific knowledge topics classified in 3 levels
UCGIS Body of Knowledge

- Ten knowledge areas
 - 1) Analytical methods
 - 2) Conceptual foundations
 - 3) Cartography and visualization
 - 4) Design aspects
 - 5) Data modeling

UCGIS Body of Knowledge

- Ten knowledge areas (continued)
 - 6) Data manipulation
 - 7) Geocomputation
 - 8) Geospatial data
 - 9) GIS&T and society
 - 10) Organizational and institutional aspects
UCGIS Body of Knowledge

• Analytical Methods
 – AM1 Academic and analytical origins
 • 1-1 Analytical foundations
 • 1-2 Analytical approaches
 – AM2 Query operations and query languages
 • 2-1 Set theory
 • 2-2 Structured Query Language (SQL) and attribute queries
 • 2-3 Spatial queries

UCGIS Body of Knowledge

• Analytical Methods
 – AM3 Geometric measures
 • 3-1 Distances and lengths
 • 3-2 Direction
 • 3-3 Shape
 • 3-4 Area
 • 3-5 Proximity and distance decay
 • 3-6 Adjacency and connectivity
Considerations in developing core knowledge

• 1) Level of depth of knowledge classification
 – Broad and general vs specific

• 2) Level of detail necessary for surveying sub-disciplines
 – Geodesists, land appraisers, etc.

• 3) Current relevance of the knowledge
 – Could some core knowledge become obsolete?

• 4) Differences of interpretation
 – Misunderstandings, disagreements, etc
Conclusions

• A set of core surveying knowledge would be useful for defining and developing educational curriculae

• Need a broad consensus across the sub-disciplines of surveying