The Model Driven Architecture Approach applied to the Land Administration Domain Model

With focus on constraints specified in the Object Constraint Language

João Hespanha, Portugal
Jan van Bennekom-Minnema, The Netherlands
Peter van Oosterom, The Netherlands
Christiaan Lemmen, The Netherlands

Presentation Summary

• The Land Administration Domain Model - 1.1
• Integrated country profile
• Applying the MDA approach to LADM
• Object Constraint Language (OCL)
Land Administration Domain Model

- LADM based on the Cadastre 2014 vision
- LADM aims to support:
 - Cadastral systems development based on a MDA
 - Enabling communication between involved parties, based on the shared ontology

LADM: Changes on version 1.1

- Use of INSPIRE Generic conceptual model elements
- Inclusion of the LegalNetwork class
- Sub-classes with no specific properties were integrated in parent class
- Full compliance with ISO19107 spatial schema
LADM version 1.1 Diagrams (1)

- Person, Right-Restricion-Responsibility and Register Object inherit from the VersionedObject

LADM version 1.1 Diagrams (2)

- The LegalNetwork class and its associations
Presentation Summary

- The Land Administration Domain Model - 1.1
- Integrated country profile
- Applying the MDA approach to LADM
- Object Constraint Language (OCL)

LADM-PT: Integrated Country Profile

- Context
 - Research - TUDelft PhD
 - Case Study of Land Administration in Portugal
 - Example of how the LADM understanding / communication / efficiency / development goals can be attained by implementing it into a specific country profile
- The Model-Driven Architecture approach
 - UML Model.
Applying the MDA approach to LADM-PT

LADM as a Platform Independent Model (PIM)

- conveys the basic ontology of the domain
- supplying a generic blueprint that can be adapted, while carefully considering a number of requirements:
 - Existing technologies and extent of cadastral coverage
 - Surveying and mapping regulations
 - Institutional settings
 - Legal and regulatory framework

Country Profile Model Transformations

LADM to LADM-PT Model Transformation

- PIM transformation -> the resulting country profile LADM-PT is still platform independent.
- UML Profile mechanism applied to a prototype; implementation of spatial objects into a number of existing spatial databases.
- UML standard mechanisms such as stereotypes, tags and class specializations
Integrating the Legal Domain

Specializations of the RRR Super-class

- LADM-PT Legal Package: the RRR abstract super-class is called “Forms of Property”
- Focus on the private property which can be registered at the Land Registry
- Horizontal Property Right

The Horizontal Property Right on LADM-PT (1)

Diagram 1: Horizontal Property as a "Right of Use"
The Horizontal Property Right on LADM-PT (2)

Diagram 2: Common_parts as a “Common Right”

Presentation Summary

- The Land Administration Domain Model - 1.1
- Integrated country profile
- Applying the MDA approach to LADM
- Object Constraint Language (OCL)
A CASE tool to support the MDA approach

Generic aims of the CASE tool
- Support development implementing a specific LADM Country Profile
- Model Transformation from a country PIM to a Platform Specific Model (PSM)
- Model constraints defined in Object Constraint Language (OCL)

Model Transformations
1. Country profile UML Model PIM to a PSM
2. Generation of a database schema

CASE Tool Development Choices
- Open Source, Eclipse based framework
- Enterprise Architect SDK
Model Transformation examples

- Generating a PSM for the LADM Survey package
 1. SurveyPoint Quality as «enumeration»
 2. SurveyDocumentType as a «CodeList»
 3. SurveyPoint spatial attributes with ISO type GM_POINT

EA Model Transformation Diagram
Presentation Summary

- The Land Administration Domain Model - 1.1
- Integrated country profile
- Applying the MDA approach to LADM
- **Object Constraint Language (OCL)**

OCL support in the MDA approach

- Nature of the Object Constraint Language
- Current shortcomings of existing modelling software
OCL examples in LADM and LADM-PT

- **LADM Legal package; share constraint on RegisterObject**

  ```
  context RegisterObject
  inv SumOfShares: self.RRR. share->sum()=1
  ```

- **LADM Survey package**

  ```
  context SurveyPoint
  inv distanceMeasuredTransferred:
  ST_Distance(self.locationMeasured, self.locationTransferred) < 5
  ```

- **LADM-PT Legal package; Horizontal Property diagram**

  ```
  context GroupPerson
  inv: self.groupType = TypeOfGroupPerson::Condominium implies self.common_PartsÆnotEmpty()
  ```

OCL support on the EA Prototype

- **Model Transformation example: PIM OCL → PSM²**

 - **From the Survey package (PIM)**

    ```
    context SurveyPoint
    inv distanceMeasuredTransferred:
    ST_Distance(self.locationMeasured, self.locationTransferred) < 5
    ```

 - **To the PSM² (after 2nd transformation)**

    ```
    <<check>>
    + check_distance_measured_transferred(): check
    ```

 - **Final implementation on PostgreSQL/PostGIS**

    ```
    ALTER TABLE survey_point ADD CONSTRAINT 
    Check_distanceMeasuredTransferred CHECK (ST_Distance(location_measured, location_transferred) ≤ 5);
    ```
Conclusions and Recommendations (1)

- Advices on the derivation of a country profile
 - Gather country specific information on each of the LADM package-related domains;
 - Legacy data models are most useful when depicted in UML; current MDA reverse engineering offers such capabilities;
 - Start looking for (quasi) complete matches on core object classes; Some LADM classes could be omitted and new specialized classes can be defined;
 - Packages should be developed iteratively by multi-disciplinary teams (namely lawyers, surveyors and computer experts).

Conclusions and Recommendations (2)

- Potential benefits from CASE tool implementations
 - Provide an Abstraction Layer supplying additional capabilities;
 - Fully automatic conversion was achieved in a prototype, from a UML PIM to a Postgresql database;
 - Extending the CASE tool to support OCL (further research needed)
Questions?