

Dynamic Monitoring Of Structures Using A Robotic Total Station

Daniel Rodrigues Palazzo

Civil Engineer, M. Eng. PhD Student in Geodesic Sciences Federal University of Parana Brazil

Introduction

- / It has been demonstrated that robotic total stations (RTS) can be used for dynamic deformation monitoring of structures in certain circumstances with good results (Cosser et al., 2003).
- ✓ The <u>aim</u> of this presentation is to report sets of experiments performed in laboratory, at the University Campus and at Rio Pelotas Bridge using Robotic Total Stations (RTS).
- ✓ LAIG (Geodetic Instrumentation Laboratory) of UFPR has acquired a TCRA 1205 (Leica) in 2002 and already owned a TC 2002 (Leica).

Introduction

Tab. 1 - TCRA 1205 and TC2002 accuracy						
	MEASUREMENTS	TCRA 1205	TC 2002			
STATIC MODE	DISTANCE	2mm + 2ppm	1mm + 1 ppm			
	ANGLE	5"	$0,5" \pm 0,1"$			
TRACKING MODE	DISTANCE	5mm + 2ppm				
	ANGLE	5"				

Laboratory Tests

- ✓ 2D oscillator developed in LAIG –UFPR
- ✓ Laboratory testes were carried out to investigate RTS capabilities for continuously monitoring of moving targets and a better understanding about colleted data with different sampling rates.
- ✓ The amplitude was fixed on 0,6 m.
- The horizontal distance was arranged to 3,45 m due to laboratory space limitations.
- $^\prime$ Two sessions of 240 s of observations at 2 Hz and 0,5 Hz were recorded.
- ✓ TC 2002 was employed to provide lower and upper coordinates.

✓ Tests at the University Campus were carried out to investigate the accuracy of TCRA 1205 on dynamic experiments collecting data with different sampling rates, with different prisms and different standoffs for the RTS.

- ✓ Prisms: standard (Leica) and 360° (Leica).
- ✓ Sampling Rate: 1 Hz, 2 Hz and 10 Hz.
- ✓ Distance: 40,574 m, 100,773 m and 146,435 m.
- $\checkmark\,$ Observations recorded in sessions of 150s.

Те	Sts :	at tl	he U	J niver e results of the	sty (C am	IPUS
Prism	Sampling Rate	TCRA1205 Amplitude	TC2002 Amplitude	Discrepancy between TCRA1205	TCRA1205 Mean Slope	TC2002 Mean Slope	Discrepancy between TCRA1205
	(Hz)	(mm)	(mm)	(mm)	(m)	(m)	(mm)
Standard	10	301.7		10.70	40.575		1
Standard	2.0	306.0	291.00	15.00	40.574	40.574	0
Standard	10,0	310,1		19,10	40,574		0
360	1.0	307.1		14.00	40 574		23
360	2,0	306,2	293,1	13,10	40,574	40,551	23
360	10,0	309,7		16,60	40,574		23
				10.00	100 880		
Standard	1,0	310,7		15,80	100,773		0
Standard	10.0	205.4	204,0	10.50	100,773	100,773	0
200	10,0	2024		7.00	100,770		
380	1,0	302,4	204.6	1,50	100,773	100 710	24
360	10.0	330.8	204,0	36.30	100,773	100,143	24
Standard	1,0	304,3		8,60	146,436		1
Standard	2,0	324,2	295,7	28,50	146,436	146,435	1
Standard	10,0	354,7		59,00	146,435		1
360	1,0	340,4		43,20	146,436		25
360	2,0	352,5	297,2	55,30	146,436	146,411	26
	10.0	351.2		54.00	146,435		25

Tests at the Universty Campus

- Discrepancies of slope distances smaller than accuracy of the RTS: <u>1 mm</u> (standard prism); <u>1,9 mm</u> (360° prism).
- ✓ Prism constant: 23,1 mm.
- ✓ X (4,6 mm), Y (3,4 mm) coordinates smaller than RTS accuracy.
- ✓ Different amplitudes may be explained by:
 - \checkmark inicial offset of telescope's crosshairs (± 4mm)
 - ✓ ATR provides a 16" telescope's crosshairs tolerance of the prism center
 - ✓ The curvature of the Earth provides an error of 1,6mm.

Tests at the Universty Campus

- ✓ Total systematic erros: 17,6 mm.
- ✓ Other errors are related to latency.

Tests at the Bridge

- ✓ The bridge tests were conducted at Rio Pelotas Bridge which links Rio Grande do Sul State and Santa Catarina State, South of Brazil.
- ✓ The bridge measures 250 m in length, the main span is 189,0 m long and 7,5 m wide.
- ✓ Initial experiments were conducted in order to test the RTS in a high frequency environment.
- ✓ RTS was located on the bedrock, on concrete pillars, about 180 m away from the monitoring points.
- ✓ Two standard prisms (P1 and P2) were mounted on the bridge's handrail.
- \checkmark The total station was set up to collect data, of the dynamic traffic load, on two sessions of 85 s, at a rate of 10 Hz.

Tests at the Bridge Two standard prisms (P1 and P2) were mounted on the bridge's handrail. The total station was set up to collect data, of the dynamic traffic load, on two sessions of 85 s, at a rate of 10 Hz, but sampling data rate was not constant during bridge tests and varied around 7 Hz. Figure 2 - Rio Pelotas Bridge and monitoring points

Tab. 4 -	Standard	deviations	and displa	cement am	plitudes of CEMENT AMI	bridge to
PRISM	(mm)			(mm)		
	σ _N	σ	σΖ		E	
P1	0,5	1,0	5,4	13,0	11,0	15,0
P2		1,2	6,2	3,0	5,0	13,0
Differe session RTS ac The ma (P1 and 14,0 m	ent dyna tests. ccuracy aximun d P2) an m).	amic loa 2 5mm + 1 displac re close 1	ds were 2ppm. cements to that e	applied calculat mpirica	on bridş ed for re lly obser	ge dur eflecto ved (±

ing

CONCLUSIONS

Laboratory ambient (changes in sampling rate): At low speed, RTS measured the movement target well. A higher sampling rate could provide better results, because larger amount of data is recorded.

The tests at the University Campus showed that in dynamic monitoring of targets both satandard prism and 360° prism may be used, provinding good precision. In addition, the influence of the growing distance is reflected on the aplitudes of the displacement of the targets.

CONCLUSIONS

The results from the Rio Pelotas Bridge tests showed that monitoring displacements resulted good precisions. The observed displacement amplitudes were close to the empirical amplitude.

In all experiments, the RTS precision was above or close to the accuracy provided by Leica. But, the phenomenum of latency produces changes in observations that may be investigated in the future.

Other experiments will be conducted by the researches of LAIG in order to identify and mitigate tihs effect.

