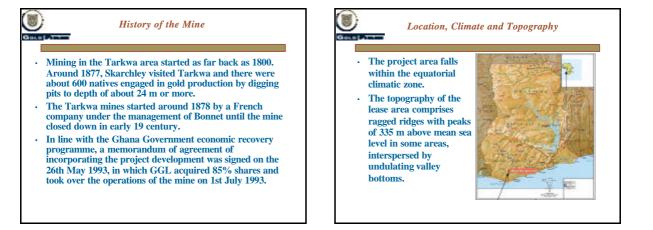
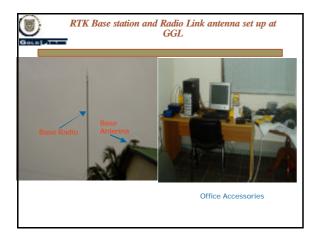
The use of RTK GPS in Open Pit Survey – A Case study at Gold Fields Ghana Limited, Tarkwa, Ghana.



by

MENSAH Francis, MPhil student & Chief Surveyor, GGL DUNCAN Edward Eric, MSc (Glasgow) BSc (Kumasi) Lecturer

Introduction


- GPS is being used for Planimetric controls, detailing as well as a wide variety of engineering applications.
- Goldfields Ghana Limited (GGL) currently operates 10 active mine pits with pit locations being at a maximum distance of 6km apart. GGL management took the bold decision of purchasing some GPS equipment to help facilitate the surveying process and enhancing the map-making process of the company.

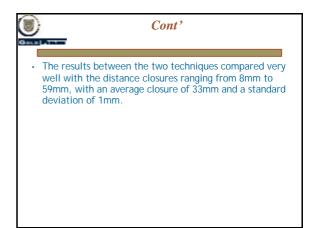
)	GPS Survey at Gold Fields Ghana Limited
aug	K survey was introduced to GGL in December 2004 to ment the fleet of Sokkia Total Stations being used on mine.
Tri	e RTK survey system at GGL comprises of 1 R5700 mble unit as the main base, 1 R 5800 mobile base, and 5 800 Trimble receivers.

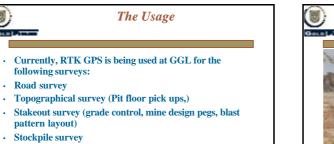
Cont'

• Figure 2 shows the main base station set up at the survey office with the antenna on the roof of the survey office. A calibration survey was performed on 8 known coordinates to establish the known point for the base.

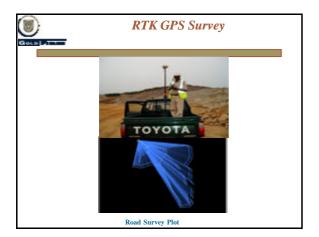
	Calibration Results							
-	_	Calibration Survey						
From To	Min. no of tatellites	RM5(m)	Slope direser(m)	Horizontal precision(m)	Vertical precision (m)	PDOP(m)		
PIM		0.005	3481.592	8.610	0.036	1.945		
These PT9M	- 2	0.004	2418,006	8.810	0.017	1.652		
These PS3M		0.004	1835.620	0.007	6.017	2.096		
These-	.7	6.663	2927,499	0.006	0.033	1.895		
These- GFID13M	34	0.008	5296.384	0.010	6.017	1.534		
These AKE5M	7	0.003	1468,594	0.006	0.013	2,395		
Thate: AKENAM	39	0.005	1997.397	8.007	6.613	1.124		
These- KOT3M	19	0.006	4412.562	0.007	6.012	1135		

Calibration Results							
Veighted Ambiguity Vector 1 tatistics to evaluate the quali tatistics in table 2 are the de paselines.	ty of a baseline solution. The						
Table 2 Default values	s for good Baselines						
Parameters	Default Values						
Reference variance	=1						
Ratio	>1.5						
Root Mean Square (RMS)	<15mm						
Root Mean Square (RMS) PDOP	<15mm <7						


-	Cont'
•	From the results above, the RMS values were all within the acceptable limit of <15mm, the PDOP were within acceptable limits of 3 as used in the Trimble Survey Controller. A horizontal precision of 8mm and vertical precision of 14mm were achieved.
•	The known coordinate of the main base station on WGS-84, Ghana National Grid and GGL Grid was generated and tabulated in table 3.


systems	ase station grou	Ind Coordinates	in 3 gria	
Base Station	Latitude	Longitude	Ellipsoidal height	Remarks
WGS-84	5-19-34.0907N	2-01-26.2801W	125.069m	Universal
Ghana Grid	72686.740	160812.173	125.069m	National
GGL grid	11059.882	8674.491	125.069m	Local

Comparison of RTK survey and Total Station survey


 In other to ascertain the accuracy of the RTK operations, a comparison between conventional survey using Total Station measurement and RTK GPS measurement was performed and the outcome of the survey were as follows:

1	TK GPS SUP	YEY	TOTAL STATION SURVEY				
EASTING	MORTHING	ELEVATION	EASTING	NORTHING	ELEVATION	100	
8046 774	10831-035	112,315	904/6 767	10530.997	112 374	60	
7465.067	8587 151	163.872	9469.851	1087.178	183 642	AR.	
8964.878	9612.588	187-154	8900.849	9612-621	+17+27	40	
10799-493	10742.964	98.704	10799.493	10743-958	28.688	MIT	
10549 179	8139 019	146 3 56	10549 131	8139.005	147.028	G	
12516.895	8540 638	154.042	105 16 171	8340 824	154.100	6	
10467-654	8746.716	139 240	10467-640	8746.684	159 2 79	761	
10484 856	8572.453	160.184	10484-825	8572 606	990.192	GT	
10446 752	8721.004	160.858	10465 734	8721.071	160.014	GT	
10472.040	8851.035	547,501	10472-048	8851.008	147 468	61	
10406 591	8996 516	134 548	10484 577	8994 091	134.015	GI	
	DEVI	ATION					
10	125	102	CODE	MISCLOSE V			
0.007	0.038	-0.063	50P1	0.039		0.0	
0.016	-0.027	4.010	AKE2	0.021		0.0	
0.021	-0.035	:0.027	AKES	0.009		0.0	
000 8	0 000	0.010	AITS 5	0.000		0.0	
0.045	0.014	.0.042	GTS	0.050		0.0	
5 624	0.012	-0.054	015	0.027		0.0	
0.018	0.030	-0.035	7531	0.000		0.0	
5.522	0.952	-0.059	OT4	0.019		0.0	
0.078	-0.005	0.042	673	0.019		0.0	
-0.0018	0.027	0.022	012	0.024		0.0	
0.014	0.025	0.020	011	0.029		0.5	

Problems associated with RTK usage.

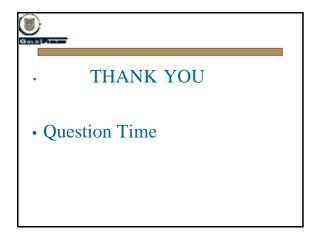
 The basic problem currently been experienced is the erratic radio link in some areas of the mine due to the topography of the operational area as enumerated under topography and drainage in the relevant information about the mine and high PDOP in some pits with high walls thereby restraining surveyors from achieving higher productivity as compared to others.

Bosplat

• It was also observed in the course of the year that when satellite availability exceeds 8 radio data link becomes difficult due to the volume of data that needs to be broadcast through the repeater stations.

Advantages

 RTK survey at GGL have reduced man hours by approximately 40 - 50%, a surveyor is able to demarcate 100 grade control pegs within an hour and half with RTK which other wise could have been achieved at the fastest period of 3 hours by means of Total Station method. There is no need for a surveyor to wait for fog to clear before starting a survey, bad weather is now a thing of the past.


Efficiency							
	In other to ascertain the efficiency of the system, control points were installed in 6 out of the 10 Pits currently in operations and monitored over a one week period which yielded the results in table 5.						

	Addressing T	and on Mile	Pasitor		_			
1	inere i	Statutor.	Care	Date				
14-1 042	20.05.149	124,908	stress 1	344-3046				
181,243	10084824	100 8.96	LLY					
1881.174	12428.049	141.000	***					
1 80. 62.6	10077 847	143.490	ALC:					
101 209	10044 349	144038	DAPT					
1.1 1 1 1 1 1	11000.0102	125.034	= 0F1					
					-	1.1		Station.
		_				57		Veter
112.41	8480 184	124 814	states 1	214 22:00	1.223	33.9	0.004	0.000
100.267	10084818	122.687	MA.2		0.014	0.004	-2.94*	0.014
10.00	12425304	143.040	991		1.82	144	8.010	0.050
Con Labor	10144110	145515	SLP1		115	1 144	122	112
	110044105	128.85		-				0.044
241.778	11000.000	1.128.979	1071	-	1.01	8.082	-1.14	0.041
ATT MAN	PART INC.	COLUMN 1	THE OWNER	Transa	1.114	100	104	1.111
440.248	12064 8 88	122 844	LACE .	1.0000	3.041	1.044	4 5 30	0.549
	12478.874	141958			1.044	8.624	1 4 10	6.081
100.00	1101710	140.014	4421		100	1.0	355	1 1 1 1
101 248	10044428	144.036	SAPE.	-	1.114	4.587	3.85	2 364
111 11	TTANK LAN	128.040	1071	-	1 1 2 2	1.007	3 5 20	0.042
-					-			
11.00	1000 47	104.800	100ml 1	1442004	1 112	0.002	10014	5.582
100 200	1004431	122 848	14.1		1.017	-1.52	-100	5 5-4
1221.022	12428810	143.575	881		134	0.007	-0.517	6.514
194 114	10077-029	548 500	44.01		-0.048	-0.500	-0.0+0	0.010
1222 222	10044338	144.0.52	11471		104	8.080	8.00.5	5.548
1-1.645	LATE ON	175 534	2.241		4.141	1.185	-1 X M	1 164
						_		
1010-010	4555 125	124.818	1004.1	8-8-0.004	9.052	104	3212	2.001
1841 775	TOBLES	1 1 5 45	14.1		1.114			4.6/1
1001 224	12423.849	143.008	891		4.140	10 DOA	-0.012	0.040
110.003	10077764	146.010	ARCE		1,003	0.061	-4.028	0.043
10.00 (4)	10044.040	144,018	GAPT		0.017		9.014	4.007
244 800		124 922	1071		1.000	10.228	9.062	0.0+0

From the data above, it could be observed that the part differences are all less than 10 cm even though the presence of human error due to improper leveling coul	Cont'
differences are all less than 10 cm even though the	
not be over ruled. This test proved that the RTK GPS i accurate and efficient.	s are all less than 10 cm even though the of human error due to improper leveling could r ruled. This test proved that the RTK GPS is

Conclusions and recommendations

- The introduction of RTK GPS has generally enhanced mapping operations at GGL thereby reducing the mapping process by 30%.
- Responses for mapping services by other departments are being met on time and with utmost efficiency. The use of RTK in setting out blast patterns has also improved floor conditions due to accurate drilling depth especially on design ramps.
- For mining purposes the accuracies obtained using GPS were very reliable and of high quality.
- We wish to recommend to Trimble to improve upon the memory battery life of the TSCe which for now does not last for the eight hours guarantee to last.
- To other Mining companies who have not yet tried the technology, we will encourage them to put their money in it for they will never regret they did.

