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SUMMARY 
 
The Learning Vector Quantization (LVQ) Neural Network approach has been widely used in 
acoustic seafloor classification. However, one of its major weak points is the sensitivity to the 
initialization, affecting the seafloor classification accuracy. In this paper, Genetic Algorithm 
(GA) is used to optimize the initial values of LVQ. The GA-based LVQ can rapidly provide 
the optimum initial reference vectors and accurately identify various types of seafloor 
sediments. The proposed approach was applied to seafloor classification using Multibeam 
Echo Sounder (MBES) backscatter strength data in Jiaozhou Bay near Qingdao City of China. 
Compared with the standard LVQ, the experiment results indicate that the approach of 
GA-based LVQ can improve the seafloor classification speed and accuracy. 
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1. INTRODUCTION 
 
Seabed sediment classification has been an important research topic in marine science and 
engineering. In ocean resource exploration, marine engineering, port construction and 
seafloor pipeline investigation, quicker and more accurate seafloor classification methods 
should be applied for distinguishing the different seafloor types in order to obtain a complete 
and systematic sediment distribution map. The traditional seafloor classification method 
depends on grab samples in the site and identifies a variety of sediment types by analyzing 
sample data in laboratory. However, the method is time consuming and labor intensive, 
especially in the deep water area, where it is very difficult to grab seabed sediments. 
Furthermore, traditional grab work is carried out according to planned grid points and its 
classification results hardly represent the true seabed sediment distribution because the data at 
a limited number of sampling sites are used to generate sediment distribution map using 
interpolation methods. In 1970s, marine geologists firstly utilized the echo sounder signal in 
seabed characteristic mapping (King et al., 1970). Echo sounder measures seabed sediments 
acoustic parameters (reflection coefficient, sound speed, sound attenuation and backscatter 
strength), which are used to study sediments geologic properties (grain size, density, 
composition). This is a remote and rapid classification method and can provide the complete 
and accurate seafloor characteristics data and maps. From 1960s, multibeam echo sounder 
(MBES) has been a newly and high-resolution seabed exploring system. It can provide rapid, 
high-resolution, and complete coverage that include both bathymetry and sidescan 
backscatter data. Using the seafloor backscatter strength (BS) data from each beam and 
automatic classification technology, we can directly obtain the seabed sediments distribution 
maps. Seafloor classification using MBES data plays an important role in the ocean science 
research and marine engineering construction. 
 
Seafloor classification from MBES backscatter strength data has been an active research area 
over the past decades. Many methods have been proposed, such as power spectrum analysis 
(Reut et al., 1985; Pace et al., 1988; Milvang et al., 1993), texture analysis (Subramaniam et 
al., 1993; Pican et al., 1998), classical statistical classification (Huseby et al., 1993; Pican et 
al., 1998) and neural networks (Alexandrou et al., 1990; Kavli et al., 1993; Michalopoulou et 
al., 1995). Especially, Kohonen’s competitive-learning neural network such as Learning 
Vector Quantization (LVQ) neural network is widely applied in the acoustic seafloor 
classification (Zerr et al., 1994; Chakraborty et al., 2003, 2004; Zhou et al., 2005). However, 



TS9 – Hydrography I 
Yongqi Chen, Xinghua Zhou, Yongting Wu and Qinhua Tang 
An Approach to Seafloor Classification with GA-Based Neural Network 
 
Shaping the Change 
XXIII FIG Congress 
Munich, Germany, October 8-13, 2006 

3/15

one of the major weak points of LVQ is its sensitivity to the initialization (Chung et al., 1993; 
Pal et al., 1993), affecting the seafloor classification accuracy. In this study, Genetic 
Algorithm (GA) is used to optimize the initial values of LVQ. The GA-based LVQ can 
rapidly provide the optimum initial reference vectors and accurately classify and identify 
various types of seafloor sediments, such as rock, gravel, sand, fine sand and mud. 
 
This paper briefly introduces the process for backscatter data pre-processing, followed by the 
theory of LVQ neural network. Then the approach of GA-LVQ neural network in seafloor 
classification is discussed, including the theory of GA and it is used to optimize the initial 
values of LVQ. A set of real data is analyzed and the results discussed. Some concluding 
remarks are finally made. 
 
2. DATA PRE-PROCESSING FOR SEEFLOOR CLASSIFICATION 
 
A MBES system records both depth data and seafloor backscatter strength information. The 
backscatter strength is understood as echoes from the seafloor, and it is dependent on the 
incidence angle, seafloor roughness, sediment properties and the sound through the water 
column (Simrad, 1998). The different backscatter strength then represents the seafloor’s 
ability to reflect sound energy. This makes it possible to differentiate between different types 
of sediments. In general, rock reflects more energy than sand, and sand reflects more energy 
than mud, etc. BS is defined as (Lurton et al., 1994; Zietz et al., 1996; Simrad, 1998): 

ABSBS B lg10+=                                      (1) 

where, A is the seafloor insonified area (Figure 1). Around normal incidence (θ＝0°), 

2RA RTθθ=                                            (2) 

and elsewhere, 

RcA Tτθ
θsin2

1
=                                       (3) 

θT and θR are respectively the transmitter and receiver beam width, R is the range, θ is the 
beam departure angle, c is the sound velocity and τ is the pulse length. BSB is the bottom 
backscatter coefficient which is the property that determines the reflectivity of the seafloor. It 
is dependent on the incidence angle θ. When θ = 0°, BSB is the constant. 

)0(            °== θNB BSBS                                (4) 

When θ ≠ 0°, BSB is not only dependent on the incidence angle, but also on the seafloor 
roughness. Its variety complies with the Lambert’s law (Lurton et al., 1994) 

)0(       coslg10 2 °≠+= θθOB BSBS                        (5) 
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According to equation (1), (2), (3), (4) and (5), around normal incidence, 

)lg(10 2RBSBS RTN θθ+=                                (6) 

and elsewhere, 

)sin2lg(10coslg10 2 θτθθ RcBSBS TO ++=                 (7) 

where, BSN is the normal backscatter strength, BSO is the oblique backscatter strength. They 
only reflect the seafloor’s characteristics. The incidence angle θ can be calculated through the 
Snell’s law. In order to get BSN and BSO, the raw backscatter strength data must be corrected for the 
transmission loss, ray bending, Lambert’s correction, seafloor local slope, insonified area correction, and 
near nadir reflection correction (Figure 2). Finally, the backscatter strength data which only reflect 
the seafloor’s characteristics can be obtained through data pre-processing (Tang et al., 2005). 
The corrected data can now be used for the further seafloor classification research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Beam geometrical configuration of multibeam echo sounder 
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Figure 2 Process flow for backscatter data pre-processing 
 
3. LVQ NEURAL NETWORK 
 
Neural network is the data-driven, nonlinear and nonparametric model. It has been an 
important tool in the complex signal processing and classification in the last decades. 
Classification has been one of the most active application fields in neural network researches. 
There are usually two kinds of neural network models in seafloor classification. One is the 
supervised learning neural network which needs geologic grab samples; the other is the 
unsupervised learning neural network which does not need any grab samples. LVQ neural 
network is the integrated network structure of supervised and unsupervised learning and its 
learning rate is much faster than Back Propagation (BP) neural network. LVQ neural network 
is composed of input layer, competitive layer (hidden layer) and output layer (Figure 3). The 
first layer and second layer constitute a competitive-learning neural network. As a traditional 
competitive-learning neural network, such as Kohonen’s Self-Organizing Map (SOM) neural 
network, it can automatically learn the classification of input vectors according to the 
nearest-neighbor method by calculating the Euclidean distance. However, the LVQ algorithm 
is a competitive approach under the supervised learning. By means of the supervised and 
unsupervised learning, LVQ neural network can distinguish the target vectors from the input 
vectors, and then divide targets into different types. The third output layer of LVQ neural 
network can change the transferred information from competitive layer into the defined target 
classes which we need. 
 
The core of LVQ neural network is based on the nearest-neighbor method by calculating the 
Euclidean distance. Distances between each input vectors and competitive layer neural nodes 
can be calculated, and the output node which is of minimum distance is designated as a 
winning node (Kohonen, 2001). 

{ }),(min),( ic WXdWXd =    (i=1,2,…,n)                   (8) 

where X is the input vector, Wi is the reference vector, d(X, Wi) is the distance between X and 
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Wi, and Wc is the winner subclass. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Schematic depiction of LVQ neural network 
 
The following equations define the basic LVQ algorithm process: 
when i = c, 
if X and Wc belong to the same class, 

)]()()[()()1( tWtXttWtW ccc −+=+ α                        (9) 

if X and Wc belong to the different classes, 

)]()()[()()1( tWtXttWtW ccc −−=+ α                       (10) 

when i ≠ c, 

)()1( tWtW ii =+                                       (11) 

where 0 < α(t) > 1, and learning rate α(t) is usually made to decrease monotonicity with time. 
It plays a very important role for network convergence. By the iterative learning, the input 
vector X will be assigned to the class which the reference vector W belongs to. The class of 
each input vectors can be obtained through the competitive learning process. 
 
4. SEEFLOOR CLASSIFICATION USING GA-LVQ NEURAL NETWORKS 
 
LVQ neural network has a good identification property and any input vectors can be used in 
the network whether it is linear or nonlinear. Furthermore, LVQ neural network has much 
better tolerance and robustness than BP neural network. When the LVQ neural network is 
established and set right parameters, it will get satisfactory classification results. Hence, LVQ 
neural network has been widely used in seafloor classification. However, the traditional LVQ 
is sensitive to the reference vectors and it does not work efficiently if the initial reference 
vectors are not set properly. As a special optimization algorithm, GA can search all over the 

Output Vectors 

Output Layer Competitive LayerInput Layer 

Input Vectors  

T1 X1 

Xn Tn 



TS9 – Hydrography I 
Yongqi Chen, Xinghua Zhou, Yongting Wu and Qinhua Tang 
An Approach to Seafloor Classification with GA-Based Neural Network 
 
Shaping the Change 
XXIII FIG Congress 
Munich, Germany, October 8-13, 2006 

7/15

operation space and get the optimum initial reference vectors.  
 
4.1 Genetic Algorithm 
 
GA provides a universal frame of optimization solutions to the problem of nonlinear, 
multi-modeling and multi-object complex system (Holland, 1975). It has been used in the 
areas of function optimization, combination optimization, auto-control, machine learning, 
image processing, artificial intelligence and genetic code, etc. GA has much better robustness 
and universal optimization ability. It searches the most optimum value from the point of 
space until the global optimization results can be obtained. Combined with GA’s global 
optimization ability, LVQ neural network can rapidly select appropriate reference vectors. 
 
(1) Coding method 
The coding method is a key issue in GA. GA has many different coding methods, such as 
binary bit string, Gray code and float coding. In order to improve the local search ability of 
GA, the proposed approach has been implemented using Gray code because it is easy to 
process crossover and mutation operations. 
 
(2) Fitness function 
The GA’s fitness function is used to estimate the individual optimization degree by 
optimizing computation. Those individuals who have much higher fitness will have more 
opportunities to be duplicated to next generation. Different problems have different definition 
methods of fitness function. 
 
(3) Selection, crossover and mutation 
GA includes three basic operations: selection, crossover, and mutation. Selection operation 
chooses the best individual from the initial group and makes it as father generation who 
produces the new offspring to the next generation. This process simulates natural selection of 
biology evolution. Crossover is an extremely important operation in GA. It is a 
recombination operation that combines subparts of parent individuals to produce offspring 
who contain some part of both parents’ genetic material. Crossover operation behaves the 
thoughts of information exchange between mating individuals. Mutation provides an 
opportunity for producing offspring and introduces variation into the individuals. That 
variation would be global or local. Mutation operation occurs occasionally but randomly 
changes the value of a string position. 
 
4.2 GA-LVQ Neural Network 
 
The most optimum reference vectors W firstly can be obtained by the above genetic algorithm. 
The calculated optimum reference vectors can be applied to LVQ neural network and it will 
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improve the seafloor classification speed and precision. LVQ neural network combined with 
GA can rapidly and accurately classify and identify different seafloor types. The calculation 
steps of GA-LVQ neural network are following (Figure 4). 
 
(1) Establishment of LVQ 
LVQ neural network must be primarily established. X is chosen as input sampling vectors and 
T is the relative output target vectors. The nerve cell number of LVQ is set S. The input vector 
X should be normalized, and its value is between 0 and 1. 
 
(2) Definition of GA Parameters 
The N initial strings are produced randomly and each string structure is named as an 
individual. N individuals constitute a population. Let set number of generation t be 0 and the 
initial population P(0) be formed. Suppose crossover and mutation probability is Pc and Pm. 
The error ε represents the end of iteration in GA. 
 
(3) Calculating Fitness Function 
In the first instance, the mean square error distance between random individuals and input 
data is calculated as follows: 

2
1

2))()((1)( ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

i
ii tPtX

M
tD                          (12) 

where D(t) is the mean square error distance, M is the population number, Xi(t) is input 
sampling vectors and Pi(t) is the individual. Then, the fitness function f(t) can be defined as: 

)(1
1)(

tD
tf

+
=                                        (13) 

where f(t) is within [0,1]. Lastly, calculating: 

)1()( −−= tDtDd                                     (14) 

If |d| < ε, then go to step 5, and the iteration of GA is end. 
 
(4) Iterative calculation 
According to calculated fitness, the individual crossover operation and mutation operation 
with probability Pc and Pm is carried out. Let t = t + 1, form t’th generation, then go to step 3. 
 
(5) Obtaining initial reference vector 
Through the iterative calculation, when |d| < ε, the GA stops. The initial reference vector W 
can be obtained. 
(6) Network training 
Let set learning rate α, maximum training epoch n and mean square error ω. After many 
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iterative training, the distribution of reference vector will be changed in the competitive layer 
of LVQ neural network. This distribution is fit for classification of input data. 
 
(7) Network testing and application 
While the network has been trained, the reference vector is stable and the network is tested by 
simulative function and sampling data. LVQ neural network will provide each input data with 
corresponding classification results. 
 
Finally, when all of backscatter data are imported into the trained and tested network, it will 
classify and identify different seafloor types and the sediment distribution map can be 
obtained by GA-LVQ neural network ultimately. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Process flow for classification of GA-LVQ neural network. 
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5 EXPERIMENTAL RESULTS 
 
5.1  Study Area Data 

 
The MBES backscatter strength data were collected using a hull-mounted Simrad EM3000 
(300kHz) system in a study area located in Jiaozhou Bay near Qingdao City of China (Figure 
5). Analyzing from the earlier sediment distribution map and recent 42 ground-truth grab 
samples, the study area can be divided into five homogeneous regions in terms of seabed 
sediment types, which are rock outcrop (class A), gravel (class B), sand (class C), fine sand 
(class D), and mud (class E) (Figure 5). 
 
EM3000 system records not only longitude, latitude, depth data but also co-registered 
backscatter strength information. Due to many factors, such as ocean environmental noise, 
sound scattering and reverberation, sound transmission loss, sound absorbing, local bottom 
slope and near nadir reflection, the recorded raw backscatter strength can not directly reflect 
true seafloor characteristics. The raw backscatter strength data must be corrected for a series 
of corrections (Figure 2), and the backscatter strength data which only reflect seafloor 
characteristics can be obtained through data pre-processing (Tang et al., 2005). Through 
analyzing the geologic grab samples in site, the corresponding 3828 processed backscatter 
strength data are used in this experimental study (Including 782 rock, 550 sand, 450 sand, 
990 fine sand and 1056 mud backscatter strength data). The total of 3828 backscatter samples 
are divided into 2552 training samples, about two thirds of the total backscatter samples, and 
1276 testing samples. 
 
5.2 Results and Analysis 
 
Establish LVQ neural network, then 2552 training sample data are inputted into network and 
the output target vectors represent 5 different seafloor types. Let set nerve cell numbers S = 
30, learning rate α = 0.01, mean square error ω = 0.003. During the process of GA, using 
genetic individual numbers N = 30, 24 bit gray code, crossover probability Pc = 0.9, mutation 
probability Pm = 0.1, ε = 0.001, and the end of GA is |d| < ε (Figure 4). 
 
Figure 6 shows a comparison between the results with the standard LVQ and GA-LVQ neural 
network. One can see that GA-LVQ neural network has great improvements in the 
convergence speed and ability compared with the standard LVQ neural network. When 
GA-LVQ neural network runs 1575 steps, its ω < 0.003 and the convergence condition 
achieved. While the standard LVQ neural network runs 3000 steps, its mean square error is 
still 0.1 and bigger than its convergence value 0.003. The network is still oscillated and it is 
difficult to converge quickly. 
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2552 training data and 1276 testing data were respectively inputted into the trained GA-LVQ 
and the standard LVQ neural network. The classification results are shown in Table 1 and 
Figure 7. In Table 1, the total data percentage of classification precision is not simply data 
average precision, but calculated by total sample data (including training samples and testing 
samples) and obtained 5 different seafloor types precision. From Table 1 and Figure 7, the 
classification precision for rock, gravel, sand, fine sand and mud is 95.4%, 85.3%, 91.7%, 
88.2% and 90.2% by GA-LVQ neural network, which is much higher than the classification 
precision with the standard LVQ neural network that is 89.7%, 72.0%, 80.3%, 75.2% and 
82.1%, respectively. 
 
From the above experimental results, the proposed GA-LVQ neural network has great 
improvement in classification speed and precision over the standard LVQ neural network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Schematic depiction of sediment distribution on the study area near Qingdao. 
 
 
 
 
 
 

A B

C

D

E

Rock 

Gravel 

Sand 

Fine Sand 

Mud 

Land 

Grab Data 

Study Area 

Qingdao



TS9 – Hydrography I 
Yongqi Chen, Xinghua Zhou, Yongting Wu and Qinhua Tang 
An Approach to Seafloor Classification with GA-Based Neural Network 
 
Shaping the Change 
XXIII FIG Congress 
Munich, Germany, October 8-13, 2006 

12/15

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 6 Mean square errors of GA-LVQ and standard LVQ neural network. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 Classification precision with two approaches 
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Table 1 Results of seafloor classification using GA-LVQ and LVQ neural network 
 

 
6 CONCLUDING REMARKS 
 
In this paper, GA is used to optimize the initial reference vector of LVQ neural network. The 
GA-LVQ neural network can rapidly obtain the optimum initial reference vector and it speeds 
up the convergence of network and improves the classification precision over the standard 
LVQ. Comparing the GA-LVQ with the standard LVQ, the experiment results indicate that 
the proposed GA-LVQ approach rapidly and accurately classify and identify various different 
types of seafloor, such as rock, gravel, sand, fine sand, and mud in the study area. 
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