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SUMMARY 
 
Repeated precise leveling surveys carried during the past decade point to an instability of the 
nodal points in the leveling network in the southwest part of Israel. This situation prevents the 
adjustment of the leveling network properly which would ensure the providing of correct 
heights for benchmarks. Modeling the regional and the local vertical movement of points will 
enable adjustment of the leveling network, which contains lines that were measured in 
different times. 
For the purpose of monitoring the stability of nodal points nine GPS campaigns were carried 
in the region over a period of one calendar year. In this study the large number of monitoring 
sessions enabled the investigation of the fluctuations of the nodal points, based on physical 
processes such as the cyclic effects of swelling and shrinking of the ground.   
The GPS measurements were analyzed by a Two-Step analysis. In the first step the geodetic 
measurements were processed sequentially without modeling the variations in the height of 
the networks points. In the second step the variations in the network geometry were modeled 
by means of a physical model. 
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The Stability of Nodal Points in the Leveling Network in the Southwest 
Part of Israel 

 
Gilad EVEN-TZUR, Israel 

 
 
1.  INTRODUCTION 
 
Nodal points of a leveling network are used as a basis to determine the heights of benchmarks 
in the national vertical control network. Repeated precise leveling surveys during the past 
decade pointed to an instability (of up to several cm) of the nodal points in the leveling 
network in the southwest part of Israel. This renders any attempts for a network adjustment to 
failure. In order to examine the behavior of the nodal benchmarks intensive monitoring 
measurements were carried using GPS. The goal of the monitoring network is two-fold, to 
estimate the model of any vertical motion of the benchmarks and to define areas in the 
network which behave in a similar way. Multiple monitoring sessions over a period of a year 
provided the ability to monitor global and seasonal behavior of the nodal benchmarks. 
 
The vertical accuracy of GPS measurements is not in the same quality of the leveling 
measurements, but they are relatively inexpensive and fast. These advantages enable the 
measuring of monitoring network several times a year. Since the previous leveling campaigns 
in the investigated area pointed to vertical movements of several centimeters, the GPS 
measurements enabled the monitoring of these movements. 
This paper describes the design of the monitoring network and the GPS measurement 
process. It presents the analysis of the monitoring network using a Two-Steps analysis, based 
on two deformation models which describe the vertical position of a point relative to time, the 
linear motion model and the swelling and shrinking dynamic model. 
 
2.  THE METHOD OF TWO-STEPS ANALYSIS 
 
Two types of models are pertinent in deformation analysis, the mathematical model that 
represents the geodetic measurements and the deformation model. The mathematical model is 
usually conceived as being absolutely correct, while the measurements are regarded as 
quantities corrupted by measurement noise. The deformation model should describe the 
physical reality, but the validity of the physical model and its system noise is frequently 
limited.  
Estimation of the deformation parameters directly from the geodetic measurements may lead 
to undesirable results. System noise due to inadequacies of the physical model may cause 
sever distortions of the parameter estimates. 
The relationship between a vector of measurements l  and a vector of parameters x can be 
expressed by a set of observation equations, given as: 
 

vAx +=l  (1) 
 
A denotes the Jacobian matrix and v is the measurement noise vector. It may be assumed that 
A is a column rank deficient due to the need for datum definition. The parameters x are 
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calculated under the minimum condition PvvT , where P is the weight matrix of the 
observations. 
Since the vector of parameters x can be expressed as a linear function of a vector of 
parameters s, another set of equations may be created: 
 

wBsx +=  (2) 
 
where B denotes the Jacobian matrix and is usually a full column rank matrix, and w is the 
model noise vector. The parameters s are calculated under the minimum condition T

xw P w , 

where xP  is the weight matrix of the observations in the second model. 

This approach for solving s indirectly from the measurements vector l  while using a vector 
of pseudo-measurements x is referred to as a Two-Step analysis (Papo and Perelmuter, 1993), 
where in the first step x is solved using the measurement vector l , and in the second step x is 
used as pseudo-measurements for solving the parameter vector s.   
Substituting equation (2) into equation (1) yields the One-Step analysis: 
 

vAwABsvwBsA ++=++= )(l  (3) 
 
where the measurements vector l  consists of a systematic part ABs, and two random parts 
Aw and v. 
This paper employs the Two-Steps analysis method for monitoring the stability of nodal 
points in the leveling network in the southwest part of Israel. 
 
For k sets of measurements il , each vector of parameters ix  can be estimated independently 
as: 
 

ii
T
i

1
ii

T
ii lPA)AP(Ax̂ −=  (4) 
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T x̂..x̂x̂x̂ =  resulting from the first step will be used as pseudo-
measurements in the second step.  
The set of deformation model parameters ŝ  is solved by equation (2) (Papo and Perelmuter, 
1993): 

T -1 T
x xˆ ˆ( ) x=s B P B B P , (5) 

 
The weight matrix xP  is produced by using the variance-covariance matrix x̂Σ  instead of the 

cofactor matrix x̂Q  (Even-Tzur, 2003). The cofactor matrix ŝQ  and the variance-covariance 

matrix ŝΣ  are: 
T 1 2

ˆ ˆ ˆx 0s s s
ˆ( ) ; m−= =Q B P B Σ Q  (6) 
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While 2
0m̂  is equal to (Even-Tzur, 2003): 
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3.  NETWORK DESIGN AND FIELD DATA COLLECTION 
 
The monitoring network contained 10 points. Preference was given to nodal benchmarks 
existing in the leveling network, but some nodal points were destroyed over the years and 
nearby benchmarks were selected instead. Some of the nodal points in the investigated area 
were not suitable for GPS measurements but the chosen benchmarks were ones established 
with good geotechnical standards. Benchmarks without suitable stability, for example ones 
that were located on electric poles or bridges, were disqualified. Three points from the Israeli 
Geodetic-Geodynamic network were also chosen. These points were built according to high 
technical specifications to ensure their geotechnical stability (Karcz, 1994) and it is important 
to monitor their stability. After considerations of the requirements, conditions and constraints, 
and after a tour in the field ten benchmarks were chosen, (the locations can be seen in figure 
2 and their  construction methods are detailed in table 1. An additional permanent GPS 
station located in the investigated area was added to the network.  
 
For vertical movement monitoring purposes the GPS antenna set-up is of great importance. 
To increase the reliability of the network a GPS antenna was set up twice, independently, at 
each point in order to detect and identify gross errors resulting from the positioning of the 
GPS antenna at the marker points, identify alignment errors, and measure the antenna height. 
 
Four Trimble dual frequency GPS receivers (3×4000SSE and 1×4000SSI) with geodetic 
antennas were used for the network measurements. The antennas were set up on tripods 
except at the G1 points, where a special device that was screwed to the point and enabled a 
stable set up of the GPS antenna for long periods of time was used. 
 
Five sessions enabled measuring the network with two independent antenna set ups in each 
point. The duration of each session was planned for 4.5 hours. In each campaign the same 
sessions were measured. 
 

Name Location Construction 
718/A  Port of  Ashdod Bolt on concrete banister on platform 
402U Ashqelon Marina Bolt on concrete banister on platform 
65/F Southern exit of Yavne Bolt on solid rock 
40/F Pelugot junc. 8 m drilling pipe 

362/A  Urim junc. 4 m drilling pipe 
436/A Northern to Omer 4 m drilling pipe 
4727  Qama junc. Wall nail  on concrete banister 

EZRA Ezricam junc. 4.5 m drilling pipe (G1) 
ASHK Southeast to Ashkelon  4.5 m drilling pipe (G1) 



TS19 Deformation Measurements and Analysis II 
Gilad Even-Tzur 
TS19.2 The Stability of Nodal Points in the Leveling Network in the Southwest Part of Israel 
 
FIG Working Week 2004 
Athens, Greece, May 22-27, 2004 

5/13

Name Location Construction 
OFKM Park of Ofaqim  4.5 m drilling pipe (G1) 
LHAV Kibbutz Lahav 5 drilling pipes to depth of 4 m. 

(permanent GPS site) 
Table 1: The network BM location and method of construction. 

 
4.  FIRST STEP: EPOCH BY EPOCH DATA PROCESSING 
 
Each session was processed with the permanent GPS site (LHAV). Every processing 
contained five sites, which enabled the production of 10 baselines. The coordinates of the 
permanent GPS station were set as fixed in each session processing. Solutions were 
determined using the linear combination method and a value of 15 degrees was used as the 
default cutoff elevation angle for all the processing. The sessions were processed using 
precise orbits, as disseminated by the International GPS Service (IGS). The average vector 
length was 27 km, while the longest vector was 55 km long. 
 
The baselines were adjusted into a network, while the 3 3× variance-covariance matrix 
associated with each baseline was used for weighing the observations. To ensure that the 
error model would match the GPS observations better, the variance-covariance matrix was 
multiplied by a constant scale factor.  
Detection of gross errors was performed using the w-test. Gross errors in the adjusted model 
will result in the reduction of the quadratic form of the residuals Tˆ ˆ(v Pv) by (Chen, 1987 and 
Etrog, 1991): 

T T 1 T
vˆ ˆR v PE(E PQ PE) E Pv−∆ = , (8) 

while vQ  is the Least Squares estimation of the residuals cofactor matrix and E is a matrix 

with the same number of columns as the number of suspected outliers, 2n , with a unit value 

in the row which correlates to the suspicious observation and zeros in all other rows. The test 
statistic is 

2

2
2 0 ,n ,R n ~ Fα ∞∆ σ , where α  is the significance level and 2

0σ  is the a-priori 

variance factor. When the observations in the Least Squares adjustment are GPS vectors the 
E matrix contains 3 times the number of columns, since each vector contains three 
components. 
For j receivers there are ( 1) / 2−j j  single vectors, while only j-1 of these vectors are 
independent.  We therefore multiply the normal matrix by factor 2 / j  to compensate for the 
artificial increase of redundancy resulting from the use of all possible vectors (Han and 
Rizos, 1995). 
The network contained 11 points. Five sessions were measured in each monitoring epoch 
which included 5 sites (except the last monitoring epoch, where one session was measured 
twice). Ten vectors were processed from each session, in total 50 vectors per monitoring 
epoch. The number of unknown parameters to be solved was 30 ( )3113 −× , and the number 
of observation equations was 150, so for the sum of 120 degrees of freedom could be 
expected in the adjustment process. The degrees of freedom are reduced by 3 for each vector 
that is removed from the system. The results of the data processing for each session can be 
seen in table 2. 
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Estimations of the accuracy of the network points in a local horizon system in the free net 
solution for all 9 monitoring epochs can be seen in table 3. These values present the accuracy 
of the measurements without any influence of outside factors such as datum definition.   
The accuracy of LHAV is significantly higher than that of the other points. Including LHAV 
in every session processing dramatically increased the number of local degrees of freedom, 
this which resulted in a higher accuracy. In the G1 points a special device that was screwed to 
the point and enabled a stable set-up of the GPS antenna for long periods of time was used, 
while all the other points were measured using a tripod. However, it can not be claimed that 
using the special devise for the GPS antenna set-up improved the accuracy compared to 
points that were measured by tripod. 
 

Monitoring 
number 

Average 
GPS day 

Number of days 
between sequential 

monitoring   

Factor Degrees of 
freedom 

2
0m̂  

1 011-2002 0 5 117 1.041 
2 067-2002 56 5.5 120 0.932 
3 127-2002 60 6 120 1.003 
4 162-2002 35 7 117 1.039 
5 211-2002 49 5.5 111 0.940 
6 246-2002 35 8 108 0.983 
7 296-2002 50 8 114 1.071 
8 345-2002 49 8 120 1.014 
9 038-2003 58 8 135 1.011 

Table 2: Summery of the nine monitoring campaigns. 
 

Accuracy (1σ)  Point name 

average 
[m] 

minimum 
[m] 

maximum 
[m] 

LHAV 0.0046 0.0036 0.0073 
436A 0.0075 0.0054 0.0103 
659U 0.0069 0.0049 0.0096 

OFKM 0.0067 0.0049 0.0093 
073U 0.0069 0.0048 0.0106 

ASHK 0.0058 0.0045 0.0083 
402U 0.0062 0.0051 0.0088 
040F 0.0074 0.0054 0.0104 
065F 0.0063 0.0043 0.0098 
406U 0.0058 0.0044 0.0089 

EZRA 0.0057 0.0043 0.0091 
Table 3: The accuracy of the network points in a local horizon system in the free net solution. 

 
5.  SECOND STEP: DEFORMATION ANALYSIS 
 
The minimum constraints solution of the network points height for each monitoring epoch 
and their variance-covariance matrix are used as pseudo-measurements for the solution of the 
Second Step, where in each solution different models can be tested to describe the vertical 
position of the network points. 
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5.1  The Deformation Model 
 
Two deformation models were tested to describe the vertical position of a point relative to 
time, the linear motion model and the swelling and shrinking dynamic model.  
The height of a point h in time t is described in the linear model as equal to 
 

0h h h t= + ∆&  (9) 

where 0h  is the vertical location of the point in standard time 0t , h&  is the linear velocity of 

the point and 0t t t∆ = − . 

In the dynamic model a cyclic factor is added for the description of the vertical position. The 
model represent the vertical location relative to time is received from the integration of the 
dynamic model describing the acceleration h&&  of a point:  
 

2 c 2
h cos( t)

T T

π⋅ π= ∆&&  (10) 

 
It is a simple sinusoidal model which is dependant on the coefficient c representing the 
swelling/shrinking. The cycle period is T, and the acceleration is calculate for time it  relative 

to the reference time 0t , where i 0t t t∆ = − . The vertical height of a point as derived from the 

integration of equation 10 is 
 

0

cT 2
h h h t cos( t)

2 T

π= + ∆ − ∆
π

&  (11) 

 

where the three parameters, 0h , h&  and c are unknowns and should be solved. 

 
5.2  The Statistical Tests 
 
Statistical tests are applied for estimating the correspondence of the motion model and its 
significance. Parameter x  that is derived from the measurements is tested to see if it is 
significantly different from parameter x with a certain confidence level (1 )− α . The null 
hypothesis 0(H )  is tested against any alternative hypothesis 1(H ) : 
 

0

1

H : x x

H : x x

=
≠

 (12) 

 
When only one parameter is tested the Chi Square 

2( )χ  distribution is used, and when a 
vector of parameters is tested the Fisher (F) distribution (Cooper, 1987) is used. When xQ  is 

the cofactor matrix of x , the null hypothesis is tested against the alternative hypothesis using 
the value w obtained from Equation (13) (Hamilton, 1964, Koch, 1999): 
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T 1

xw [( ) ( )] / d−= − −x x Q x x . (13) 

 
The calculated value w is tested against F( ,h,r)α , which is determined based on the Fisher 
distribution with the chosen significance level α , the degrees of freedom r ,and d the rank of 

xQ . The null hypothesis is rejected if w F( , r,d)> α . 

 
5.3  Results 
 
5.3.1 The linear motion model 
 
The free net solution of the linear motion model showed an a-posteriori variance factor of 
unit weight equaling 2

0m̂ 1.066= , while the model noise was T
x =152.0w P w . The ratio 

between the a-posteriori variance factor and the a-priory variance factor 2
0(m 1.0)=  is tested. 

The test statistic is (Cooper, 1987) 
2
0
2
0

m̂
F( , r, )

m
Ω = α ∞� . (14) 

 
The 9 sessions provided 1128 degrees of freedom, a rather high value in the assessment of s, 
meaning that r can be defined as infinity, r = ∞ . A failure of the test might be caused by an 
incompatible model, gross errors or a weighting problem. The test is accepted if FΩ < . 
Setting the significance level at  5%α =  for the linear model resulted in F(5,1128, ) 1.07∞ = , 
and the test was accepted, marginally. 
At the second step, the velocity (h)& of the network points was tested. The null hypothesis 

0H : h 0=&  was tested against the alternative hypothesis 1H : h 0≠& . As the dimension of xP  

equaled 11 11×  and its defect was 1, the rank of the matrix was d 10= . Thus 
F(5,10, ) 1.83∞ =  was obtained for an 5%α =  level of accuracy. According to Equation (13) 
w 1.40= . Since w F<  the null hypothesis was accepted, at a significance level of 5%α = , 
signifying that there was no linear movements during the measurement campaigns.  
 
5.3.2 The swelling and shrinking model 
 
The cycle period T 1=  was set for testing a yearly cycle. When setting 0t 2002.1= , a 

minimum model noise equaling T
x =101.4w P w  was received for the zero epoch.  

The a-priory variance factor was 2
0m̂ 1.031= . It is obviously clear that this dynamic model 

better fits the observations then the linear motion model. The h&  and c were tested for the 

xP dimension of  22 22×  and its defect 2, and the rank of the matrix was d 20= . When 

setting an 5%α =  level of significance, F(5,20, ) 1.57∞ =  was obtained. w 3.15=  was 
calculated according to Equation (13). Since w F>  the null hypothesis was rejected at the 
significance level 5%α =  , indicating  that swelling and shrinking movements occurred 
during the measurement campaigns.  
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To clarify which points moved a datum had to be defined. An S-transformation was applied 
to transform vector s and its covariance matrix to a weight constraints solution. Congruency 
testing was performed to determine the stable datum points (as presented in Equation (13)) 
but the test statistic was applied only to the datum points. 
Five points (362A, OFKM, 4727, 402U, 040F) in the center of the network were selected as 
datum (see Fig. 2). For an 5%α =  level of significance, F(5,8, ) 1.94∞ =  was obtained. 
According to Equation (13) w 0.63=  was obtained. Since w F<  the null hypothesis was 
accepted verifying that the 5 datum points were stable. 
The weight constraints solution based on the datum definition is presented in Table 4.  
 

Point 
name 

0h  

[m] 
0hσ  

[m] 

h&  
[m/year] 

h
σ

&

 

[m/year] 

c 
[m/year] 

cσ  
[m/year] 

LHAV 417.103 0.0031 0.0022 0.0060 -0.0868 0.0168 
436A 257.172 0.0039 -0.0060 0.0080 -0.0646 0.0214 
362A -29.659 0.0030 -0.0013 0.0059 0.0127 0.0163 

OFKM 48.489 0.0029 0.0007 0.0056 0.0005 0.0155 
4727 183.527 0.0031 0.0028 0.0067 -0.0192 0.0178 

ASHK -186.731 0.0026 0.0013 0.0055 0.0239 0.0150 
402U -210.117 0.0040 0.0152 0.0078 -0.0551 0.0213 
040F -15.626 0.0039 -0.0034 0.0078 -0.0179 0.0203 
065F -254.655 0.0043 0.0165 0.0084 -0.0339 0.0220 
718A -285.590 0.0041 0.0119 0.0079 -0.0346 0.0213 

EZRA -175.199 0.0040 0.0189 0.0077 -0.0673 0.0210 
Table 4: The weight constraints solution of the swelling and shrinking model, where points 362A, 

OFKM, 4727, 402U and 040F (yellow background) defined the network datum. 
 
After setting a stable datum, a single point test was carried for all the other points in the 
network. If the null hypothesis was accepted for a single point then the point was considered 
stable at a significance level α . Otherwise a significant movement was defined for the point. 
Four points were found to have significantly moved (see Fig 1.); 2 points (LHAV and 436A) 
in the southeast part of the network and 2 points (402U and EZRA) in the center of the 
network near the coastline. The results of the single point testing are presents in Table 5. 
 

Point name h r F(α,h,r)  k Significant 
LHAV 2 ∞  3.0 13.96 yes 
436A 2 ∞  3.0 6.04 yes 
402U 2 ∞  3.0 4.33 yes 
065F 2 ∞  3.0 2.58 no 
718A 2 ∞  3.0 2.07 no 

EZRA 2 ∞  3.0 6.81 yes 
Table 5: Single point testing results for a significance level 5%α = . 

 
Figure 1 depicts the behavior of the tested points for the shrinking and swelling model, when 
compared with the datum points. The blue points represent the measured height in the 9 
campaigns. The black line represents the linear trend motion and the pink line represents the 
swelling and shrinking model. 
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Figure 1: The swelling and shrinking model in the points with significant movement relative to the 
datum points (362A, OFKM, 4727, 402U, 40F). 
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Figure 2: Map of the monitoring area. Green triangles represent monitoring network point. 
Black lines define the datum zone and the red line define the deformed zone 

 
6.  DISCUSSION AND CONCLUSIONS 
 
A number of different sources may contribute to the apparent variations in the observed 
vertical site positions. These sources include global and local phenomenon, where the local 
phenomenon is divided to systematical and incidental dependant phenomenon. Therefore, the 
vertical position of a point may change in a constant manner, in a systematical cyclic manner, 
in an incidental cyclic manner or in an arbitrary manner. 
 
Constant movement may be caused by tectonic plate movements and can be divided into 
constant velocity and acceleration. Cyclic movement, systematic or incidental, can be caused 
by physical processes of regular or irregular character like solid earth, ocean and atmospheric 
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tides, ground water, hydrodynamic and thermal expansion of bedrock etc. GPS measurements 
are characterized by some modeling errors as well, such as errors in the modeling of satellite 
orbit; atmospheric and water vapor modeling and antenna phase center which may have 
seasonal components as well.  
 
Based on the examination of the continuous GPS array daily solutions, Dong et al. (2002) 
compared the relative contributions of the different sources and found that surface mass 
redistribution, including ocean and earth tides, as well as atmospheric and ground water 
loading, are the primary causes for the observed annual vertical variations of site positions. 
The contributions of geophysical sources and model errors to the observed annual vertical 
variations in site positions are in the magnitude of several millimeters. 
 
It is logical to assume that most of the global and regional physical processes which cause 
instability will have the same effects in a small area. Looking at the 5 point datum defined for 
this research, significant shrinking and swelling movements are evident in two local areas, 
each defined by a pair of points. The annual amplitude of the points LHAV and 436A relative 
to the reference system is approximately 12mm, and for the points 402U and EZRA it is 
approximately 10mm. The linear motion measured for points LHAV and 436A is smaller 
than the motion measured for points 402U and EZRA. The larger linear motion of points 
402U and EZRA may be caused by the ground water level and linear changes in the 
Mediterranean Sea level. These two points are close to the coastline and a Mario-graph 
located near to point 402U showed positive linear rising of the sea level by 13cm over the 
monitoring year. 
Attempting to explain the variations in the position of the points by soil expansion schemes 
according to the rainfall cycle is complicated. The swelling and shrinking model is best 
fitting when defining the zero epoch 0t  as 2002.1. In this model the extreme points are 

received in the beginning of January and August (which in Israel mark the middle of winter 
and summer, respectively). The amount of precipitation over the investigated area is not 
constant, the rain fall varies between 250mm and 650mm. The rain fall season is limited to a 
period of four months (December to March). Therefore, we could expect a maximum 
swelling at the end of the winter when the soil is watered and maximum shrinking at the end 
of the summer when the soil is completely dry. 
Any correlation between the points’ construction and their movements is obvious apparent. 
Thus, the tested swelling and shrinking model may not be the best model to describe the local 
phenomenon in the investigated area. Further experimentation with different models may be 
carried with relative ease at the second step of the analysis, until a more suitable model is 
found to explain the phenomena detected in the measurements. 
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