NATIONAL TECHNICAL UNIVERSITY of ATHENS

Spatial Information System:

A need for integrated Monument's Documentation

Charalabos **IOANNIDIS** Andreas **GEORGOPOULOS** Chryssy POTSIOU

Assistant Professor NTUA Professor NTUA Dr Surveying Engineer NTUA Geographic Information System is a tool for:

legal, administrative and economic decision making planning and development

emphasis on geographical reference

Spatial Information System

for applications on Monuments, as:

- > Attribute element equally important as Geographical element
- > Spatial datum is the local environment of the site

Components of a Spatial Information System

- Data entry subsystem geometric documentation attributes on relational Database
- Data storage and retrieval subsystem large volume of geometric 2D/3D data
- Data manipulation and analysis subsystem interactive process between SIS - User automated processes
- Data visualisation subsystem 2D and 3D representations in vector and raster format 3D textural scenes - Modelling Augmented Reality

Archaeological Spatial Information System:

Why?

- Multi-level and Multi-purpose Documentation
- Interrelation of different kinds of information
- Ease retrieval of information through queries
- Avoiding multiple storage of data
- Entry of new types of data and updating of information
- Other special reasons depending on the application

Where ?

- \checkmark Restoration of a monument
- \checkmark Conservation of a monument
- ✓ Development of an archaeological site

How?

3 examples on 3 different monuments

Procedure stages

1st stage: Geometric recording Photogrammetric procedures Field surveys Terrestrial Laser scanning

- 2nd stage: Development of the SIS Structure of the system Data Management
- 3rd stage: Implementation of the SIS Provision of products

Application on the Wall of Ancient Messene

General Information

- Established in 369 B.C.
- Political & Cultural centre until the 3rd A.C. century
- 9 km Wall Hellinistic fortification-skill Irregularly rectangular construction system 2.45 – 2.80 m wide 2 main Gates: Arcadian and Laconic Gate
- part of the Wall of 70m length Object of the study: 355 scattered blocks-stones in situ

Geometric Recording Photogrammetric procedures

- Aerial photos
- Helicopter
 camera UMK13x18
 7 photos in 2 strips
 photo-scale 1:300
- Balloon camera Rolleiflex6006 multi-coverage 23 strips photo-scales 1:90 – 1:200

Restoration proposal using the SIS

- 3D recording photogrammetric procedures field surveys direct measuring of all surfaces of each scattered block
- Database for scattered blocks number of the stone morphological characteristics structural characteristics geometrical characteristics direction of falling location of landing surfaces
- Use of visualisation tools interactive procedure Level of

B. Conservation of a monument: Application on the Dafni Monastery

Katholikon of the Byzantine Monastery of Dafni 11th century

At the southwestern suburbs of Athens

- Masterpiece of Byzantine architecture
- Fine mosaics in the interior

An earthquake at 7 Sept. 1999 caused severe damages

Aim of the study

Creation of SIS with detailed DataBase suitable to record and manage the geometric and qualitative information of every constructural element on the monument's surface

Geometric data

- Vector drawings at a scale of 1:25
- Orthophotos of the facades at a scale of 1:25
- 5 horizontal sections
- 20 vertical sections
- Orthoimages of all the mosaics at a scale of 1:5

Attribute information

- Geological properties
- Deterioration-degradation type
- Surrounding connecting material
- Type and date of intervention
- Dimensions
- Name of the mosaic

Data Base design

- Conceptual scheme
- ➢ Logical scheme
- > Implementation in the physical level

Closing Remarks

- ✓ Fast recovering of information and attributes about each element of the monument
- ✓ Ability to relate quantitative and qualitative attributes to each other and to space
- Re-specification of the database components according to the users' needs

MYCENAE : Historical Information

- Location: 150km southwest of Athens
- The biggest center of Prehistoric Hellenism 2nd Millennium BC
- Human settlements since 19th century BC, best period:1300-1100BC
- Two disasters: 10th century & 468 BC, final abandonment at Roman Times
- Elements of the Archaeological site: Acropolis 3.2 hectares: ruins of palaces, temples, houses, etc Cyclopean Walls and the famous Lion Gate 60 hectares at the western and south-western side of the Acropolis: Tholos tombs of great art
- Golden and clay excavation finds

Geometric Recording of the site Photogrammetric procedures

- Airphotos taken by helicopter (UMK 13x18, c=100mm) 45 photos-6 strips, scale 1:2000
 6 photos, scales between 1:500 - 1:1000
- 7 photos-1 strip, scale 1:600
- 18 photos- 3 x 6 tombs (semi-destroyed), scales 1:200 1:300
- 25 Control Points GPS
 Aerial-triangulation BINGO
- Digital Photogrammetric Stations: SoftPlotter Autometric
 - Archis Plus SISCAM
 - \rightarrow Automated DEM, Breaklines
 - \rightarrow Orthophotos & Orthophoto-mosaic
 - \rightarrow Stereo-restitutions

Photogrammetric procedures

- Terrestrial photos internal parts of the Wa palace facades,
- staircases,
- parts of Grave Circle A
- internal facades of each one of the Tholos Tombs
- Control Points
 Fi
- Rectifications ARCHIS
- Orthophotos
 - thophotos DPS AR
- Stereo-compilations
 DPS S

Spatial Information System

General Principles

- To avoid the unreasonable insert of existing data of large volume
- To make best use of the SIS as a decision making tool both for demonstration purposes and for research support, usable by tourists/visitors and by professionals
- ARCVIEW v3.1 of ESRI with 3D Analyst 3D Studio MAX for model visualization Adobe Premiere for video producing and editing

Data of the SIS

• All products of the detailed geometric documentation 2D plans

at various detail levels, time periods and historic phases

- Texts from historic sources and literature
- Digital images recent or old photos excavation photos old graphs recreations of the site video
- Videos of tour paths with a pre-defined walk-through and flyovers

Conclusions

- **Traditional methods** for the documentation of the archaeological sites **are changing radically** due to the use of Spatial Information Systems
- There is a need for **3D recording, editing and visualisation** for applications on monuments despite the fact that the 3D processes are laborious and timeconsuming
- **Integration** of all types of data should be possible and encouraged
- The implementation of an **Archaeological SIS** confronts the monument and the related pieces of information in a unique way; it contributes essentially to the study of the monument