Error Propagation in Directly Georeferenced Terrestrial Laser Scanner Point Clouds for Cultural Heritage Recording

Derek Lichti and Stuart Gordon
Department of Spatial Sciences
Curtin University of Technology
Perth, Western Australia

Introduction

- Terrestrial laser scanners (TLSs) have found application to many cultural heritage recording projects.
- However, insufficient attention has been given to point cloud precision, which is often overstated.
- Our aim was to construct a random error budget for directly georeferenced TLSs that models all sources.
- Many of the contributing random sources are common to the surveying field.
- A new probabilistic model is proposed for the angular uncertainty due to the finite laser beam diameter, which may be significant.
- The error budget for a heritage-recording case study undertaken at the UNESCO World Heritage-listed Wat Mahathat site in Ayutthaya, Thailand, is presented and analysed.

Case Study: Wat Mahathat, Ayutthaya, Thailand

- Located 8 km north of Bangkok.
- An ancient capital of Siam, Ayutthaya holds UNESCO World Heritage status for the many culturally significant Wats in the city and its environs.
- Site was scanned in order to create a three-dimensional virtual model to support education and historical interpretation.

Probabilistic Model

- The probability governing the angular position \((\theta, \alpha)\) of the range measurement is assumed to be uniform within the beam’s cross-section having diameter \(\delta\).
- The standard deviation for beamwidth is given by

\[
\sigma_\alpha = \pm \frac{\int_0^{\pi/2} \alpha \sigma_\theta d\alpha}{\int_0^{\pi/2} \sigma_\theta d\alpha} = \pm \frac{\delta}{4}
\]
Case Study (cont’d)

- Full error propagation performed on a nominal 0.1 x 0.1 m grid (57,674 points) to assess quality of the full point cloud mosaic.
- Budget includes:
 - Setup and back sight station errors from network adjustment
 - Leveling, pointing and optical centering errors
 - Observation errors
 - Beam width error
- Some of the relevant parameters (Riegl LMS-Z210)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Numerical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range σ</td>
<td>±(25 mm + 20 ppm)</td>
</tr>
<tr>
<td>Vertical σ</td>
<td>±0.036° (13.3″)</td>
</tr>
<tr>
<td>Horizontal σ</td>
<td>±0.018° (165″)</td>
</tr>
<tr>
<td>Laser Beamwidth (θ)</td>
<td>3 mrad (619″)</td>
</tr>
<tr>
<td>Beamwidth σ</td>
<td>±135″</td>
</tr>
</tbody>
</table>

Ayutthaya 95% error surface contours (contours in mm)

Summary

- The subject of error propagation has seemingly been a casualty of the rapid emergence of the very impressive TLS technology.
- Many of the error sources in the proposed budget are fundamental to elementary surveying.
- A model has been proposed for laser beamwidth uncertainty, which may be significant.
- The estimated precision in the Ayutthaya network was much poorer than the advertised range precision—which is often taken to be gospel—for the scanner in question.
- However, the attained precision was more than adequate for this type of recording project.
- Pre-analysis recommended for any recording project in order that realistic project specifications be set and fulfilled.

Acknowledgements

- Dr. Taravudh Tipdecho, National Electronics and Computer Technology Center, Bangkok, Thailand
- Jochen Franke, Curtin University of Technology