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ABSTRACT 

The progressive urbanization, industrialization and cultivation of the Ensenada city region located at the west 

coast of Mexico causes high pressure on the local and coastal ecosystems. High demand on the freshwater 

resources in combination with the semi-arid climatic conditions has led to overuse of local aquifers in recent 

decades. Resulting scarcity and salinization problems, landform changes accompanying infrastructure damage, 

degradation of soil quality and hydrological droughts present significant challenges to both civil society and local 

utilities, businesses and science. 

Developing a methodology to determine the temporal and spatial performance of acting factors on the affected 

aquifer system and promoting regional actors to assess and modify its state is the main objective of the bi-

national research project ECOAQUA. This is achieved by, among other things, conceptualizing and modeling a local 

socio-hydrological system and its interactions, as well as capturing and weighting influencing and risk factors.  

The contribution of the TU Braunschweig working group to the analysis of the dynamics and complexity of a socio-

hydrological consists in applying and extending remote sensing techniques (satellite-based InSAR), cause-specific 

modeling of surface deformation and data-based descriptive and qualitative hydrological modeling using Support 

Vector Machine (SVM) algorithms. The latter is facilitated by the high density of relevant field data and remote 

sensing data. This enables the generation of reliable temporal and spatial information about the state and the 

transformation processes of the local aquifers, taking into account different data levels. 

Here we present preliminary results of this approach. 

 

I. INTRODUCTION 

Ensuring availability and sustainable management of 
water and sanitation for all is one of the great 
challenges of the 21st century (U.N. General Assembly, 
2015). It is well observed that extensive human 
interaction with the hydrosphere alters the quality and 
availability of freshwater resources especially in areas 
with arid to semi-arid climatic conditions. Therefore 
holistic, efficient and sustainable use of vital resources 
not only plays a major role on the affected ecosystem, 
but also for the socio-economic fabric of the area. A 
guideline set by Vogel et al. in 2015 urged to face this 
challenge in an integral effort, bringing together 
knowledge, data and techniques from various 
disciplines to gain in-depth understanding of the 
dynamics governing the feedbacks of human and 
natural systems and approach resolutions of complex 
water problems. 

The bi-national research project ECOAQUA of the 
Mexican universities UNAM (Mexico City), UABC 
(Ensenada) and the TU Braunschweig from Germany 
presents an example of this effort.  

The study area is located in the northern part of the 
Baja California peninsula, an arid costal region 110 km 
south from the US-Mexican border line. Geologically  

 
the region is characterized by coastal and alluvial 
flatlands, where the city of Ensenada with 280 000 
inhabitants and the croplands of Maneadero are 
found.  

These flatlands are surrounded by the Guadalupe 
and Ojos Negros intermountain valleys, rising up to 
1000 m. The area developed a prosperous economic 
system with agriculture and livestock breeding being 
the most important activities, followed by fishing, 
aquaculture and a rapidly growing touristic sector.  

 

Figure 1 Location of the study area. 
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The region depends mainly on water supply from the 
local aquifers, the coastal Maneadero Aquifer south of 
Ensenada and the mountainous Guadalupe Aquifer 
northeast of the city. In the last years growing socio-
economic activities, the demand for urban, 
commercial and tourist infrastructure accompanied by 
a lack of proper management strategies imposed 
considerable pressure on the coastal eco- and aquifer 
system. This has led to considerable shortages in 
quality and supply of fresh water, saltwater intrusion 
in the Maneadero Aquifer and prevailing 
overexploitation of the Guadalupe Aquifer with 
decreasing water levels and wells running dry, 
implying adverse effects ranging from soil 
contamination, crop deterioration and public health 
indications. 

The ECOAQUA interdisciplinary team of researchers 
from geodesy, geology, mathematics, hydrology, 
oceanography, sociology, economics, coastal 
engineering and ecosystem management committed 
to:  

• determine the temporal and spatial performance 
of acting factors in the area eco- and socio-
economic system to enhance its conservation, 
integration, function and resilience . 

• set special focus on groundwater resources and 
transformation processes of the aquifer system, 
considering its interdependencies with freshwater 
supply and soil productivity as basic but crucial 
services for bio-economic strategies. 

• apply and further enhance radar remote sensing 
data processing techniques in hydrology to 
determine and weight influencing and risk factors 

• establish of a methodology that enables the 
evaluation and modification of the previous and 
future performance of the system. 

II. ECOAQUA MODELING 

A. From Concept to data-driven Model 

The first but critical step in this research project was 
conceptualizing a model that would reflect the 
dynamics of the most crucial components of the 
coupled natural-human system and help simplify its 
extreme complexity to a level of understanding its 
basic functioning. The conceptual model proposed in 
this study combines the Driver-Pressure-State-
Response (DPSIR, Majorosova 2016) with the Source-
Pathway-Receptor-Consequence (SPRC, Narayan et al., 
2012) framework. The combination of the two, DPSIR 
being designed to describe human interaction with the 
environment and SPRC serving as a risk assessment 

tool, enabled a qualitative description of key 
components, ergo a holistic description of human and 
natural forces driving change in the component’s 
states. The basis to select and organize the latter in the 
DPSIR-SPRC categories strictly followed their relation 
to adverse effects on the states of the aquifer system 
and the productivity of the soil, referred to as 
receptors in the conceptualization. To date 15 adverse 
states of the receptors with corresponding causality 
chains (CC) were conceptualized and validated by 
expert knowledge.  

 
The conceptual model with its component structure 

was now utilized to explore dynamics and feedback 
mechanism across scales and tailor data collection and 
algorithm set-up to perfectly fit the research question. 
The causality chains guided the design and input data 
selection for the modeling stage. Our study 
complements more physically-based approaches in 
using data-driven methods to integrate multivariate 
and multitemporal data for setting up prediction 
models. The family of algorithms used to model the 
conceptual causality chains are the Support Vector 
Machines (SVMs). SVM algorithms are based on 
statistical learning theory and are set up to minimize 
structural risk, model complexity and prediction error 
simultaneously (Vapnik, 1999). Their great 
generalization capability made them attractive for 
application in the field of hydrological modeling and 
groundwater level monitoring, taking into account 
their significant role in managing water resources 
(Raghavendra & Deka, 2014). Yet this approach is still 
new and needs to be further exploited to unfold its full 
potential. 

 

B. Causality Chain I 

Here we propose an example of such a chain. We 
study the adverse effect of excessive water extractions 
to the surface and the vertical compression of soil 
layers, a phenomenon being referred to as 
groundwater-induced subsidence. This effect of 
anthropogenic interaction with the subsurface 
depends on various site-specific factors such as 
geology, hydrogeology and geomorphology as well as 
on pumping rates, land use and population. CCI is an 
approach to explore this effect and to represent 
spatial dependencies of the components involved. 

The modeling of groundwater-induced subsidence 
was implemented in Guadalupe Valley, where data 
availability was sufficient. See Figure 2 for a graphical 
representation of conceptualized CCI.  
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Figure 2 Graphical representation of CCI in the DPSIR- SPRC model. (Carmona & Schottmüller, 2018) 

 
 

III. CASE STUDY GUADALUPE VALLEY 

The Guadalupe Valley is part of the Guadalupe river 
basin (2380 km²). It is located 38 km NE of the city of 
Ensenada and covers an area of 333 km². It is formed 
by a late quaternary basin with even topography and 
elevations ranging from 280 to 390 meters above sea 
level. It is surrounded by the Sierra Juarez mountain 
range (Gastil et al., 1975). 

The ephemeral Guadalupe river originates in the 
Ojos Negros Valley, then flowing west into the 
Guadalupe Valley. The riverbed traverses the valley 
and is water bearing during the rainy season from 
November through March. The alluvial sediment layers 
produced by this river, consists of gravel, sand, silt and 
clays in minor proportion.  

Guadalupe aquifer constitutes as one of the most 
important aquifers in the region. Sediment depth of 

this unconfined aquifer reaches from more than 300 m 
in the northeast of the valley to 14 m in the south-
west (Campos-Gaytan et al., 2014) and extends 79 
km². The climate in this area is characterized by large 
seasonal and annual temperature and precipitation 
variability with general intense rainfall events and 
persistent dry periods. Mean annual precipitation 
averages to 280 mm, mean monthly temperatures 
range from 0.6°C in winter to 30°C in summer. 
Groundwater recharge of the catchment area is 
calculated to reach an annual average of 26.4 Mm³. 
Since precipitation in the area is deficient to meet crop 
water requirements, irrigation has become essential in 
the basin. An estimate of 26.2 Mm³ of groundwater 
are used for irrigation and local infrastructure and 
additional 12.4 Mm³ of water is extracted to supply 
the city of Ensenada, resulting in an annual deficit of 
12.2 Mm³(CONAGUA, 2017).  

 

A. Input data for CCI-SVM regression  

In order to quantify the relation of subsidence to 
water extractions in the study area, tangible proxies 
were selected to be fed into the database. Utilizing 
radar remote sensing data to hydrologic studies 
promises a monitoring strategy that allows area wide 
observations in good temporal resolution.  

This initial target and feature selection was guided 
by conceptual knowledge captured in CCI. See table 1 
for a summary.

Figure 3:  Guadalupe Valley with Guadalupe Aquifer, wells 
(blue) and lithological drill holes (brown) used in this 
study.  
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Input Data/ Features

Features (Proxies) Source Description Proxy for model variable

Elevation         SRTM-DEM, TandemX Terrain heigth in meters above sea level (masl) Surface geometry

Slope SRTM-DEM derived Surface geometry

Aspect SRTM-DEM derived Orientation of slope w ith respect to direction Surface geometry

Distance dist(w l, w ell) COTAS PNE ABR-2017 Dependent on spatial Resolution of the Label Superimposed load,  w ater extraction

Distance dist(w l, river) Optical Data | Sentinel 2 Dependent on spatial Resolution of the Label Porosity

Depth of sediment layer

Geological Map 1 : 50 000, 11 drill 

logs, Geoelectrical survey Depth in meters below  top ground surface Infiltration capacity

Output Variable/ Target

InSAR velocites Sentinel 1 Annual vertical velocity subsidence

 
 

 

 

B. InSAR – derived vertical velocity 

The radar data to derive vertical velocities was 
captured by the Sentinel-1A satellite. The Guadalupe 
Valley is represented in descending track 173 and 
contains 47 partially overlapping acquisitions from 
October 2014 to June 2017, see figure 4.  

To derive time-dependent deformation velocities 
two multi-temporal approaches, the Persistent 
Scatterer Interferometry (PSI)1 and the Small Baseline 
Subset (SBAS) 2  algorithm were adopted to process the 

                                                           
1 developed by Ferretti et al. (2001) 
2 developed by Berardino et al., (2002) 

data. This dual approach is justified by the 
characteristics of the study area. The SBAS technique 
leads to stable results especially in rural areas, 
whereas PSI performs best in areas with temporally 
coherent point targets such on houses and 
infrastructures.  

Figure 5 depicts the spatio-temporal connections 
between the radar scenes for the PSI and the SBAS 
processing. Whereas for PSI processing one master 
scene is chosen to produce interferograms (left) with 
the remaining scenes (slaves), the SBAS technique 
utilizes different master and slave scenes, chosen 
according to a maximum difference in data of 
acquisition. A total of 270 interferograms entered the 
respective processing routines. In Figure 4B the joined 
solution from the preliminary results of the InSAR 
processing are illustrated.  
Figure 4A depicts the study area and the available 
InSAR subswath ensemble. In this first processing 
approach three independent solutions with velocity 
information were generated. In the eastern part 
spatial overlap of the solutions is attributed to the 
different processing techniques, whereas in the 

Table 1 Description of initial training data for the SVM – modeling of Causality Chain I  

Figure 5 Connection graphs for PSI and SBAS processing. 

Figure 4   A Study area, Sentinel-1A subswaths in red and blue and the extracted areas for advanced processing within one 
subswath in green (SBAS) and grey (PSI).  

              B   Results from SBAS and PSI for Guadalupe Valley from October 2014 until June 2017. 
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Figure 8  Example spatial partitions in Guadalupe Valley.  

Test set 

Training set 

western part around El Porvenir it was produced by 
the overlap of Subswath 2 and 3.  

Out of the 9 836 pixels with two different velocity 
values, the one with higher coherence was chosen to 
enter the final data set. After outlier removal a total of 
76 476 values for the target variable in the first SVM 
causality chain where prepared.  

 

IV. MACHINE LEARNING-MODEL AND                       

PRELIMINARY RESULTS 

A. ε–Support Vector Regression and hyper-parameters 

The specific machine learning algorithm used in this 
study is the ε-Support Vector Regression (ε-SVR). Here 
we provide only basic ideas behind ε-SVR and relevant 
model parameters for implementation. For 
comprehensive information on statistical learning 
theory and SVMs please refer to Vapnik (1999), Smola 
& Schölkopf (2004) and Burges (1998). 

 

 
Given a set (𝒙𝟏, 𝑦1), … , (𝒙𝒏, 𝑦𝑛) ∊ (𝑋 𝑥 ℝ) of 

observations, the aim of ε-SVR is to find a function f, 
such that 𝑓(𝒙𝒊) deviates ε at most from the observed 
target 𝑦𝑖  for all training examples and is at the same 
time as flat as possible to reduce model complexity. To 
allow for some errors greater than ε, additional slack 
variables ξ, ξ* measuring the deviations greater than ε 
are introduced. The slack variables represent 
additional constrains to the system output with their  
impact being regularized by the cost parameter C.  
 
The ε – SVR optimization task is not dependent on the 

dimensionality of the feature space, but only on dot 

product of the data in it. When trying to reveal non-

linear relationships with more complex functions, we 

can use the so-called kernel trick. Employing this trick 

means performing linear regression in a space of 

higher dimension, using the kernel to transform the 

dot product of our data in that space. In this study we 

used the Gaussian kernel k to perform the mapping. It 

is given by 

                  𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝛾 ∥ 𝑥 − 𝑦 ∥2)              (1). 

It is well known that SVM model complexity and 

hence generalization performance highly depends on 

choice of the model and the kernel parameters ε, C 

and γ (see for example Vapnik, 1999). A general 

description of their influence is: 

• 𝛆 defines the width of the insensitive zone and 
therefore affects the number of support vectors 
used to construct the regression function. 

• C controls the trade-off between flatness and the 
degree to which deviations greater than ε are 
tolerated. 

• γ is the inverse of the standard deviation of the 
Gaussian kernel. It defines the influence of a single 
training example on the construction of the 
decision boundary, ergo the choice of support 
vectors in the training set. 

B. Spatial Autocorrelation 

Spatial autocorrelation of training data poses a 
severe violation of the model assumptions on the 
independence and identical distribution of the 

observations. This can affect prediction accuracy 
substantially and lead to overoptimistic prediction 
results (Brenning, 2005).  

Spatial autocorrelation occurs, because points 
geographically close to each other are in general more 
similar than those further away. Therefore a partition 
strategy that splits the data into spatially disjoint train 
and test subsets was implemented into model building 
and prediction. Here we utilized the distance-based 
spatial partitioning as implemented in R, using the 
observations’ coordinates in a k-means clustering. 

 
C. Feature Selection and Tuning 

In this study a stepped optimization of the input 
feature subset and the optimal performing hyper-
parameters was utilized, taking into account the 
interdependency of the latter. The first step 
incorporated fast and effective hyper- parameter 
selection directly from the training data as proposed 
by Cherkassky & Ma (2002). The width of the ε-
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Figure 8 Learning curve of the ε – SVR with optimal 
input feature set and hyper-parameters. 

insensitive zone was chosen with respect to expected 
noise in the radar velocities. Then feature selection 
was carried out with different filter and wrapper 
methods, its performance evaluated and validated on 
the specific SVR model. Whereas all filter methods 
indicated the slope variable to be redundant, the 
computational expensive wrapper method Sequential 
Backward Selection (SBS) repeatedly removed all 
geometric input features, namely elevation, slope and 
aspect to substantially decrease the risk over-fitting. 
On the SBS- optimized feature subset the last 
optimization step was to fine tune hyper-parameters 
on the reduced feature with a 5-fold spatial cross-
validated random search. 

 

V. RESULTS 

A. Structure of CCI steady state SVM- model  

Spatial modeling task:  Regression task with target 
velocity and 6 features  

Learner algorithm: ε - SVR with Gaussian kernel 
Hyper-parameters: ε, C , γ 
Performance measure: RMSE 
Performance level for stepwise spatial tuning of 
hyper-parameters and input feature set: 

5-fold cross-validation with 
5 repetitions  

B. Final model and results 

The final prediction model run for the target vertical 
velocity with 3 input features {dist_well, dist_river, 
sediment_depth} and hyper-parameter set (ε, C, γ)  
=(2, 5, 0.005) resulted in deviations between observed 
and predicted in the order of 2.92mm root mean 
squared error (RMSE). This gap can be regarded as 
rather large with respect to the observed target. To 
diagnose on causes for those deviations, we utilize the 
learning curve. 
 

This curve gives fast and valuable insight into the 
generalization performance of the learned relationship 
of target and features. It displays the relation between 
the number of training examples and the error scores 
on the training and validation set. Thereby it helps 
diagnosing bias and variance to reduce errors in the 
algorithms set-up. From Figure 8 we can derive that 
the learner performance reaches stability for a training 
set size of about 45000. The curve displays a good fit to 

the data, still its peaky progression indicates that train 
and test set splits need to be harmonized in terms of 
statistical properties. Finally we observe that 
generalization performance is most likely to suffer 
from the small set of input features with explanatory 
variables missing. 

VI. CONCLUSION 

The conceptualization in the DPSIR-SPRC framework 
constitutes a theoretically sound basis for the 
combination of multiple layers of data in the modeling 
stage. This was of particular importance in the case of 
those layers that are either not considered, or 
modeled as external factors in numerical or analytical 
physically - based models. Especially the role of human 
activities in the hydrologic cycle with its many facets is 
an instance of such data. 

After a number of repetitive tuning steps to increase 
model performance, it became clear that the data set 
itself introduced a great part of the deficiency. To a 
certain extent this was expected since proxies for CCI 
model variables were poorly available at the time 
when data acquisition for this study was completed. 
This has now changed, especially for the target 
variable. An enhanced velocity time-series processing 
has meanwhile been completed, utilizing Sentinel 1 
data from 2014 until February 2019. Taking the special 
characteristics of the study area into account, a 
coherent, geology oriented solution was generated by 
a consistent SBAS-processing. The feature with highest 
influence on the target, the distance to wells being 
proxy for water extractions, will be replaced by actual 
observations of water levels from piezometers. Those 
changes will supposedly lead to a great impact on the 
generalization performance of the regression model.  
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