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ABSTRACT 

The development of high-rate permanent GNSS networks has led to the application of the GNSS 
network data for monitoring phenomena related to geohazards and ground motion. In this research, 
a novel approach for the analysis of GNSS network time series was developed for detecting anomalous 
behaviours, which can be related to geohazards. The GNSS time series are analysed in both time and 
space domains using Artificial Neural Network (ANN), to model the time-dependency of the GNSS time 
series of each station, and Spatial Autoregressive Models, to model the spatial dependency between 
the GNSS stations for each epoch. The developed approach was examined using (i) GNSS coordinate 
time series of the GEONET network in Japan, corresponding to the Tohoku-Oki MW9.0 2011 
earthquake and (ii) the Integrated Water Vapour (IWV) time series from the GNSS records analysis of 
the NERC British Isles continuous GNSS Facility (BIGF) network, corresponding to periods of significant 
meteorological events (i.e. storms). The results show that this approach effectively detects anomalous 
behaviours that could be related to geohazards (i.e. earthquakes and severe storms). The temporal 
GNSS data analysis leads to more effective results in detecting rapid large anomalous behaviours as 
earthquakes and dynamic changes of the meteorological front. On the contrary, the spatial GNSS data 
analysis leads to a more effective detection of slowly-developed geohazards related to longer period 
events (e.g. local and low-pace meteorological events). However, the approach of using both the 
temporal and spatial analysis can cover a broad range of geohazards: sudden large anomalies or slow 
small local anomalies. 

 
I. INTRODUCTION 

A. General Instructions 

Monitoring and Early Warning (EW) systems for the 
detection of geohazards is a branch of geosciences 
related closely with developments in geospatial 
engineering (Bhattacharya et al., 2012). The monitoring 
of geohazards, such as earthquakes (Edwards et al., 
2010; Melgar et al., 2013; Psimoulis et al., 2014), 
volcanoes (Houlié et al., 2006; Newman et al., 2012) 
and tsunamis (Ohta et al., 2012), can result in a large 
quantity of data from different sensors (e.g. 
seismometers, GPS, InSAR, etc.), with their analysis 
contributing significantly to understanding the physical 
mechanism of the geohazards during their occurrence. 
This knowledge is combined with sophisticated analysis 
techniques for the development of the EW systems, 
based on the current monitoring networks and systems 
(Allen and Kanamori, 2003; Colombelli et al., 2013; 
Melgar et al., 2015; Psimoulis et al., 2018a). 

The Global Navigation Satellite System (GNSS) can 
provide geo-spatial positioning in real time. 

Accordingly, networks of continuous GNSS stations are 
often used to monitor geohazards. GNSS coordinate 
time series have been used extensively in monitoring 
ground deformation and analysing earthquakes 
characteristics (Blewitt et al., 2009; Psimoulis et al., 
2014; Wright et al., 2012), seismic fault ruptures 
(Crowell et al., 2016), landslides (Malet et al., 2002), 
hydrological loadings (Bevis et al., 2002), vertical land 
movements and sea level rise (Teferle et al., 2006).  

The majority of above-mentioned studies have 
tended to analyse GNSS coordinate time series using 
temporal analysis only, while a few of them have used 
the spatial distribution of the network of stations 
mainly for representation purposes. However, none of 
them took advantage of the spatial distribution of the 
network stations in the analysis process of the GNSS 
coordinate time series.  

The aim of the current study is to develop two 
algorithms using temporal and spatial analysis of GNSS 
coordinate time series for detecting geohazards and 
anomalies. More specifically, the spatial autoregressive 
model is used for the spatial analysis algorithm, 
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assuming that the GNSS coordinate time series from a 
network of stations are spatially dependent. Whereas, 
for the temporal analysis algorithm, where the GNSS 
coordinate time series of a single station is temporally 
dependent, Artificial Neural Networks are used to 
extract the temporal dependency. By following this 
approach, the behaviour of GNSS coordinate time series 
will be monitored not only regarding the history of the 
time series of a station but regarding its spatial context 
as well, which creates a new perspective in monitoring 
using such time series.  

To evaluate the performance of the two algorithms, 
they were used in the analysis of GNSS data in two 
different applications: (i) for the analysis of the 1Hz 
GNSS coordinate time series of the GEONET network in 
Japan, corresponding to the time interval of the 
Tohoku-Oki 2011 Mw9.0 earthquake and (ii) for the 
analysis of GNSS Integrated Water Vapour (IWV) time 
series derived by the British Isles continuous GNSS 
Facility (BIGF), and the detection of anomalies which 
could be related to strong rainfall events in the UK. 

 
II. METHODOLOGY 

In this study, two different types of GNSS time series 
are analysed. For the case study of Tohoku-Oki 2011 
earthquake, the GNSS coordinate time series of North, 
East, Up (NEU) displacements were combined to form 
the 3D GNSS coordinate time series which were used as 
inputs for the two algorithms. For the case of GNSS IWV 
time series, these were derived directly from as part of 
the process of the BIGF GPS network data. The GNSS 
time series were split into two datasets: (i) the 
algorithm-training dataset, which is a part in the 
beginning of the time series used for the training of the 
algorithms; and (ii) the algorithm-testing dataset, which 
is the part of the time series following that of the 
algorithm-training dataset and is used to test the 
performance of the algorithms. The main aim of 
algorithm-training dataset is to model the 
characteristics of the GNSS time series. Initially, each 
GNSS time series were de-trended to remove any 
potential long-term linear trend (i.e. tectonic motion, 
etc.). Then, the GNSS time series were analysed using 
in-house developed Discrete Fourier Transform (DFT) to 
identify the characteristics of the time series in the 
frequency domain. Based on the spectrum of each 
GNSS time series, a cut-off frequency was defined and 
a Butterworth low-pass filter was designed to filter out 
all high frequencies of the time series, and finally obtain 
the low-frequency component of the detrended time 
series (i.e. the low-frequency time series) of each 
station in a network. The purpose of this stage was to 
train the Artificial Neural Network and to use the 
calculated statistics (i.e. means and standard 
deviations) as parameters in the next stage (i.e. the 
algorithm-testing stage). 

  

A. The spatial analysis algorithm  

In this algorithm, a special simplified version of the 
Manski (1993) model, the First-order AutoRegressive 
(FAR) model was used based on the assumption that the 
spatial dependency of the studied values is a function 
of internal interactions only. More specifically, the FAR 
model which was used is expressed by the following 
equation (LeSage, 1998): 

  
𝑌 = 𝜌𝑾𝑌+ 𝜀                       (1) 

  
where Y = N x 1 vector representing the values of the 

low frequency time series 
 ρ = the spatial autoregressive parameter 
 W=NxN matrix defining the spatial relationship 
       between the N stations  
 ε= the spatial residuals assuming to be white 

noise.  
The elements of the W matrix are given by the 

relationship: 

𝑤() =
𝑑()+,

∑ 𝑑()+,(.)
 

                      (2) 

  
 
where dij = the distance between the stations i and j  
 α = the distance exponent value.    
Since the spatial regression does not learn anything 

through time and runs for each successive epoch of the 
time series, the purpose of the training stage is neither 
to train the spatial regression nor to evaluate the 
estimation of 𝜌.	However, it is to capture the mean, 𝜇, 
and standard deviation, 𝜎, of the spatial residuals, 𝜀.  

In the testing stage, if the spatial residual values of 
the algorithm-testing dataset exceed the threshold 𝜇 ±
3𝜎 which was derived in the previous stage, it will be 
considered as a potential event.  

Whenever a potential event is detected, a spatial 
search is conducted to check if any other stations have 
potential events. In that case, this event is considered 
as a geohazard; otherwise, it is considered as a site-
specific anomaly and will be ignored accordingly. 

 
B. The temporal analysis algorithm 

In this algorithm, by assuming that the low-frequency 
time series of each single station is correlated in time, a 
Nonlinear AutoRegressive Artificial Neural Network 
(NAR-ANN) is used to perform a one-step-ahead 
prediction of the low-frequency time series:  
𝑦67( = ℎ9𝑦7+:( + 𝑦7+;( + ⋯+ 𝑦7+=( >                   (2) 
	𝛿7( = 𝑥7( − 𝑦67(                   (3)   

where 𝑦7( = the value of the low-frequency time series 
for station i at time t 

 p = the number of epochs prior to t  
 h=mapping function (usually sigmoid function)   
 𝑥7(= the value of the de-trended time series for 

station i at time t 
 𝛿7(= the temporal residuals  
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Figure 1: Flowchart of the algorithm-testing stage of the two 

algorithms (a) spatial and (b) temporal 
 

 
 
Figure 2: Representation of temporal and spatial analysis for 
a four-station network. The temporal (blue) analysis is done 

on the individual time history of each station, whereas 
spatial (red) analysis runs across the network for each  epoch 

of the time series. 

The predicted value of the low-frequency time series 
of each station is a function of its previous values only 
(𝑦7+:: 	𝑎𝑛𝑑	𝑦7+;: 	). This function is estimated by training 
the NAR-ANN (Eq.2) by using the algorithm-training  
dataset (Hagan et al., 1996). The temporal residual,	𝛿7:, 
is calculated as the difference between the value of the 
de-trended time series (e.g.𝑥7:) and the predicted 
values of 𝑦7: (i.e. 𝑦7:D) which includes all high-frequency 
components and the abnormalities that the NAR-ANN 
could not predicts. Finally, calculating the mean and 
standard deviation of the temporal residuals is used in 
estimating 𝜇 ± 3𝜎  thresholds.  

In the testing stage, the trained NAR-ANN is used to 
perform a one-step-ahead prediction of the  low-
frequency time series. If the temporal residual value is 
beyond the threshold derived in the algorithm-training 
stage, it will be considered as a potential event (Figure 
3b).  

 
III. CASE STUDY: TOHOKU OKI 2011 EARTHQUAKE 

The Tohoku-Oki Mw9.0 earthquake occurred at 
05:46:23 UTC on March 11th 2011	and it was recorded 
by the GEONET network of GNSS stations operated by 
the Geospatial Information Authority of Japan (GSI) and 
numerous studies have been made using the GNSS 
network data to demonstrate the application of GPS in 
EEW systems and estimate the strong for the 
determination of the fault model and earthquake 
characteristics (Ohta et al., 2012; Colombelli et al., 
2013; Psimoulis et al., 2015; Psimoulis et al., 2018). In 
this case study, the performance of the two algorithms 
was examined for a six-hour time period of GPS records, 
covering the earthquake occurrence.  

  
A. Available Data 

The 1Hz GPS data of 847 stations from the GEONET 
network were processed using Bernese software 5.2 
and resulted in the GNSS coordinate time series of 
North, East, Up (NEU) displacements with respect to 
reference coordinates. For the purpose of this study, 
the GNSS coordinate time series were combined to 
form GNSS coordinate time series of 3D displacements 
(Fig. 3). The GPS time series covered a period of 5 hours 
and 47 minutes before and 1 hour after the earthquake.  
 
B. Analysis of GPS data 

The 1Hz GNSS coordinate time series were split in the 
algorithm-training dataset (5 hours and 40 minutes) 
followed by the algorithm-testing dataset (12 minutes 
corresponding to 7 and 5 minutes before and after the 
earthquake). Regarding the spatial analysis, where the 
spatial weights matrix derives from the geometry of the 
GNSS network stations two solutions were examined: (i) 
one using the entire GPS network and (ii) one using a 
limited number of stations by ignoring any stations that 
are located farther than a cap distance. In this study, the 
cap distance of 200 km is presented and the distance  
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Figure 3. The GPS co-seismic displacement of the Tohoku-Oki 

Mw9.0 2011 earthquake. 
 

exponent value α was defined equal to 2, as this 
combination proved to have the best outcome. 
Furthermore, for the spatial search, using a search 
distance of 50 km is effectively used as 96% of the GPS 
stations are surrounded by at least three other stations.  

 
C. Results  

The temporal analysis proved to be highly sensitive 
and has a consistent result with the study by Psimoulis 
et al. (2018b), which was based on a similar approach, 
without though applying the ANN-NAR method. 
However, due to the limited GPS records duration, 
there is no evident benefit from the application of ANN-
NAR, as there is no significant contribution of the long-
period impact in the GPS time-series.  
Regarding the spatial analysis approach, by using the 
entire network, it is observed unrealistic early detection 
of the seismic signal at GPS sites far from the epicentre 
and this is due to the significant influence of the large 
displacement of GPS sites close to the epicentre (even 
up to a few m), across the GPS network. However, by 
applying the cap distance factor, this influence is limited 
only to surrounding stations, allowing for a more 
realistic detection of the seismic signal across the GPS 
network. However, the detection by using the spatial 
analysis is still slower than that of temporal analysis.  

Furthermore, in Figure 4 is presented the detection of 
the seismic motion as this derived by the spatial and 
temporal analyses, at the beginning of the earthquake. 
It is evident that the detection through the temporal 

analysis is quicker than the spatial analysis by five 
seconds, which for earthquake early warning systems is  

 

  
Figure 4: Plots of the distance of the GPS sites from the 

epicentre versus the time of the detection, with respect the 
earthquake time, by using (top) the temporal, (middle) the 
spatial with cap distance 200km and α=2 and (bottom) the 
spatial analysis with no cap distance and α=2.  

 
crucial. More specifically, when the spatial analysis 

identifies the seismic motion in two GPS stations, the 
temporal analysis reveals eleven GPS stations with 
detected seismic motion.   

 
IV. CASE STUDY: IWV VALUES FOR BIGF NETWORK  

The NERC British Isles continuous GNSS Facility (BIGF)  
holds data and products for ~160 continuously 
recording GNSS stations dating back to 1997 (Hansen et 
al., 2012). From the processing of the GPS only records 
using Bernese software version 5.2 derive, among 
others, the Cartesian (XYZ) coordinate estimates in daily 
SINEX files and the Integrated Water Vapour (IWV) 
values estimated in long-term hourly basis.  

More specifically, the IWV values reflect the total 
effect of tropospheric refraction on the GNSS signal and 
can be expressed as the Zenith Wet Delay (ZWD). 
However, the ZWD, which reflects the water vapour in 
the atmosphere, cannot be modelled easily and 
commonly derives as the difference between Zenith 
Total Delay (ZTD) and Zenith Hydrostatic Delay (ZHD). 
Hence, the IWV values reflect the state of the water 
vapour in the atmosphere and can be related to strong 
rainfall events.  

 
A. Available Data 

For this study, there were available the IWV time-
series estimated on an hourly basis from 72 stations of 
the BIGF network. The IWV time-series were analysed 
using both spatial and temporal analyses algorithms 
and potential events corresponding to high (or low) IWV 
values were flagged. Since the state of the water vapour 
is highly dynamic across the network, the outcome of 
flagged events from the two algorithms could be 
related to potential strong rainfall events, which is 
reflected in the rainfall data gathered by the rain-  
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Figure 5: The UTC time of the detected anomalies at the GPS 
sites based on the (left) spatial and (right) temporal analysis. 

 
gauges. More specifically, the Met Office Integrated 
Data Archive System (MIDAS) UK hourly rainfall data 
was used to determine the strong rainfall events and 
their starting and ending time. The rainfall data were 
available from the British Atmospheric Data Centre 
(BADC), from where the hourly readings of the rain-
gauges and their location were provided. 

 
 

 
Figure 6: (a) the selected GPS stations of the BIGF network 
for the IWV study and (b) the location of the rain gauges 

available from MADIS data. 
 

B. Analysis of GPS data 

The hourly-sampled GNSS IWV time series were split 
in the algorithm-training dataset, with length of 5.5  
years  (i.e. Jun 2007 – Jan 2013) to mitigate the effect of 
annual and semi-annual signals in long-term trends 
(Blewitt and Lavallee, 2002), and the algorithm-testing 
dataset of two-year long period (Jan 2013 – Aug 2015), 
which represent about the 30% of the used data.  

Discrete Fourier Transform was applied to model the 
long-term periodic signals of the IWV time series. Based 
on the spectra of IWV time series, a low-pass filter was 
applied to derive the low-frequency time series of the 
spatial and temporal analysis. It was proved that for the 
most effective cut-off frequency of the temporal and 
spatial analysis is 0.25 cycle/day and 1 cycle/day, 
respectively.  

Finally, in both algorithms, the spatial check was 
applied in order to identify extreme IWV values, related 
to strong rainfall events, and avoid potential false 
alarm. However, the spatial check was focused on the 
five GPS stations closest to the GPS station of the 
detected event. Thus, the spatial check was modified 
with respect to the one of Tohoku-Oki case study, as the 
BIGF network is a smaller and less dense network.    

 
C. Results  

The application of the temporal and spatial analysis 
on the IWV time series revealed periods of extreme 
(positive or negative) IWV values. It should be stated 
that for the temporal analysis, extreme positive IWV 
values express a high amount of water vapour which 
can be followed by strong rainfall, while extreme 
negative IWV values express significantly reduced 
amount of water vapour which potential express  
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Figure 7: The rain gauges readings (coloured dots) and stations with potential events (hollow symbols) as well as the stations 
which considered to have geohazards (filled symbols). 
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significant improvement of the weather after rainfall. 
The mean value of these temporal residuals thresholds 
is 8.7 kg.m-2. On the other hand, for the spatial analysis 
algorithm, the extreme positive or negative IWV values 
are just relevant to the surrounding GPS stations, 
expressing a local effect without indicating directly high 
or low water vapour values. The mean value of these 
spatial residuals thresholds is 3.0 kg.m-2.  

In Figure 7 is presented an indicative example of the 
flagged event by spatial and temporal analyses 
algorithms. The spatial algorithm detects a relatively 
high amount of water vapour accumulated slowly in a 
period of 18-hours, which is then followed by a local 
rainfall event. On the contrary, the temporal analysis 
algorithm flags the locations of a high amount of water 
vapour, which is moving dynamically and crossing 
significant part of the network in a few-hour period and 
then followed by rainfall, as this is indicated by the rain-
gauge data.    

In general, from the analysis of the temporal analysis 
algorithm, it was proved that the flagged events express 
dynamic changes of the water vapour related often 
with strong rainfall. Furthermore, the locations of the 
flagged stations change dynamically followed by the 
rain front. On the contrary, the flagged events from the 
spatial analysis algorithm reflect the slow accumulation 
of high amount of water vapour locally in small regions, 
which remain static and then related to local rainfall 
events.  

 
V. CONCLUSIONS  

Two different algorithms have been developed based 
on temporal and spatial analyses in order to detect 
anomalies in GNSS product time series, related to 
potential geohazards. The developed algorithms were  
assessed for two case studies of different type of 
geohazards, differing in scale and severity, and two 
different types of GNSS network of different size and 
density. The temporal analysis algorithm seemed to be 
more efficient for rapidly developed geohazards, as 
such in the case of the Tohoku-Oki earthquake or the 
rain front which changes and moves dynamically. On 
the contrary, the spatial analysis algorithm seems to be 
more efficient for slowly developed geohazards with 
regional scale. It was also proved, that the two 
developed algorithms can be applied in various type of 
geohazards or type of monitoring data, as in the current 
study were applied in GPS coordinate and IWV time 
series. However, the appropriate modifications need to 
be made based on the type of the monitored data, the 
type of the network and the monitored geohazard.  
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