Survey Innovations

1st FIG Young Surveyors European Meeting (Lisbon)

DRAVOSA Survey Department 17-18 october 2013

PUMA Survey Innovations

VanOord Survey Department 17 october 2013

PUMA Organization

Boskalis 50%

Van Oord 50%

Ċ Koninklijke **Boskalis Westminster nv**

Port investments Rotterdam

MV2

2,9 billion (total till 2030) including connection with MV1, including PUMA

Contract PUMA

1,1 billion (Construction 1st fase) including 200 million BAVO-MV2

Contract 1 – 2013 Seawall Defence and Port Reclamation (Phase 1)

Final Phase - 2030

December 2008

January 2010

January 2011

February 2012

February 2012

Contract 1 Seawall Defence and Port Reclamation (Phase 1)

Hard Seawall Defence Total length 3,5 km

Rock Works

 Approximately 5.5 million tons of rock from european stone quarries.

 About 1.6 million tons of reuse stone from MV1 block dam.

 9,558 concrete blocks reused from MV1 block dam

Measurement methods on rock placement

Understanding the differences in measurements of the average bed elevation between different measurement systems, that can possibly be used on the construction of the Hard Seawall

Test Pit Comparison of different topographical - and contact measurement methods, acoustic measurement techniques, and laser techniques

Dry Excavation - Hard Seawall 1:1 scaleStart construction end of 2009

Test Pit PUMA 2010 & Verolme dock 1999

Semi-spherical measurement
Diameter of the half-sphere is equal to the half of the nominal stone diameter.
Measurements are carried out in a 1m x 1m grid
Point measurement

•Plate measurements -1m x 1m tot 150-800kg -2m x 2m voor 1-10 ton

Grab measurementBucket measurement

Static Laser Scan measurement
Mobile Laser Scanning measurement
Fli-map

MDL LacerACE

Leica

FUGRO Fli-map

SICK LMS151

Test Pit – Underwater Measurements

- Multi-beam Reson Seabat 8125
- Multi-beam Reson Seabat 8101
- Multi-beam R2Sonic 2024
- Multi-beam R2Sonic 2022
- Multi-beam Kongsberg EM3002
- Multi-beam Odom ES3
- Echoscope CodaOctopus-II (375 KHz & 610 KHz)
- Single-beam Reson Navisound 215, 200 KHz met 3° en $9^{\circ} \Delta$

Test Pit – Underwater Measurements

•Setup measurments and Calibration on dry, with different equipment.

Test Pit – Echoscope data

www.codaoctopus.com

C:\Users\Tom.Barr\Desktop\PUMA3\PICTURES OF DATA\sd3D16.jpg

Test Pit – Echoscope data

Test Pit – Results

Survey System	Sand		20-135 mm		5 - 70 kg		150 - 800 kg		1 - 10 t	
7	Systematic Error	Precision								
-	· Te	A.			and a second		11	-	1	2º
Total station – plate	n.a.	n.a.	0.07	0.08	0.12	0.09	0.14	0.15	0.11	0.17
Total station – point	n.a.	n.a.	n.a.	n.a.	-0.07	0.07	-0.13	0.19	-0.27	0.51
Excavator – bucket ¹	n.a.	n.a.	0.17	0.13	0.14	0.15	0.34	0.27	0.32	0.40
Excavator - orange peel ²	n.a.	n.a.	0.17	n.a.	0.08	0.11	0.18	0.21	0.20	0.36
Excavator – sorting	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.14	0.22	0.18	0.32
Single-beam	0.01	0.03	0.08	0.08	0.08	0.11	0.09	0.18	0.06	0.26
Multi-beam / Echo- scope	-0.01	0.02	-0.03	0.06	-0.11	0.09	-0.19	0.15	-0.38	0.26
Static laser	-0.01	0.05	-0.01	0.06	-0.04	0.10	-0.05	0.15	-0.18	0.23
Crane based laser	0.02	0.05	0.04	0.07	-0.01	0.10	-0.08	0.15	-0.25	0.24
Fli-map laser	0.00	0.06	-0.06	0.09	-0.12	0.10	-0.17	0.18	-0.36	0.27

Test Pit – Final Results

Results are included in the new edition of "Make and Measurement Accuracies in the execution of dredging and rock placement" "

• Maak- en Meetnauwkeurigheden bij de uitvoering van baggerwerken en steenbestortingen

Sand – 240 million m³ for fase 1

Construction hard seawall Building sand profile

Construction hard seawall Rock dumping underwater

Profiling sand and stone Plough Ship – Arca

Construction hard seawall Construction temporary work acces

Blockbuster – Function overview

Blockbuster Crane Monitor System

Blockbuster position calculation system

Blockbuster in action

Blockbuster innovations

- Places blocks of 40 tons at 50m distance
- Horizontal and vertical accuracy <0.10m
- Crane monitoring system with 3D presentation of blocks
- Gyroscopes that measures the position of the clamp after the placement
- Linking crane monitoring system to PLC for automation purposes
- Automatic calculation of weight to be placed using an integrated grid cell.
- Sensors that monitor the inclination of the chassis
- Direct connection with recording computers for transfer measurement results

How do we measure this now??

Objectives:

- Measuring in shallow water to determine layer thickness of the quarry run.
- Measurement of the crown in order to determine altitude.

Which must be taken into account:

- High accuracy
- poor weather conditions

Progress of Blockbuster must be guaranteed!

With what kind of crane?

Tower crane
Crawler crane
Hydraulic crane
Telescope crane

Condor CAT 385, 46.5m

Condor other dimensions

Condor – no more seasickness

Condor - Measuring Equipment

Condor - Measuring

Multibeam survey after the placement of the first 3blocks.

Multibeam survey on the 1-10 tonne toe structure and the second layer of blocks below the waterline

Laser scan survey of the crest blocks. Additionally the survey vessel will survey the remaining part of the 1-10 tonne toe structure.

Condor – In action

Condor – Echoscope Data

Condor - results

Combined survey with Multi-beam and laser scan data

Condor – Combined bathymetry results

Condor - innovations

•Unprecedented range of 46.5 m

•Integrated Laser Scan for measuring crown blocks

•Multi-beam measurements to ± Hs 2m,and 0.5m water depth under the Multi-beam

•High measurement accuracy by mounting all sensors on a single pole

•Camera for visibilty

Removal Concrete Blocks on MV1

Echoscope as "underwater camera"

Echoscope as "underwater camera"

Echoscope 3D rendering

Echoscope innovations

- 3D Underwater camera to support the crane operator.
- 3D rendering of the ripper for better interpretation of the scope echo image.
- Ability to load a 3D model as reference layer.
- Automatically tracking the ripper by coupling with crane monitoring system
- Implementation of sound profile readings for accurate measurement
- Using Echo Scope as a survey instrument

FUGRO Fli-Map

Options Help

_ 8 ×

Alternative : Gatewing X100

Gatewing X100 Autodesk infrastructure modeler

Quad Yamaha Grizzly 350 4WD

Mobile SICK

•Design -SICK LMS151 -Trimble SPS851 -Octans IV -WiFi

Mobile SICK - innovations

- Cheap (3500,- EURO)
- Small and robust
- Easy interfacing through existing software (PDS2000)
- Quick measurement of large surfaces
- Safe measuring coarse stone gradations
- Measuring stone depots
Survey Innovations Resume

- The development of a unique Crane Monitoring System (CMS)
- A new feature was added to the Echoscope to present the stick and ripper tool as 3D models
- Survey crane Condor with a massive 46.5 m reach was constructed.
- Recycling the block dam required special use of acoustic viewing systems as underwater cameras.
- Airborne systems like the Gatewing x100 represent a breakthrough which can clearly be applied to future projects.

Thanks for your attention

Waar zee was heerst land Water verdronken in zand Jules Deelder Where there was water The land dominates. Water sank in sand Jules Deelder