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ABSTRACT: 

 

We applied six types of thresholding techniques in aim to impact of thresholding in denoising of time series, which were penalized 

threshold, Birgé-Masssart Strategy, SureShrink threshold, universal threshold, minimax threshold and Stein’s unbiased risk estimate. 

In order to compare the effect of them in denoising of noise components (white noise, flicker noise and random walk noise) we have 

constructed three kinds of stochastic models:  the pure white noise model (I), the white plus random walk noise model (II) and the 

white plus flicker noise model (III). The numerical computations are performed through the analyzing 10 years (Jan 2001 to Jan 

2011) of daily GPS solutions which are selected of  264 stations of SOPAC (Scripts orbit and permanent array center). According to 

results of computations, among the thresholding schemes in denoising of the pure white noise model (I):  minimax threshold and 

Stein’s unbiased risk estimate could reduced the distribution of low amplitude of white noise. However, minimax threshold and 

SureShrink threshold could reduced the distribution of high amplitude of white noise. Birgé-Masssart Strategy and universal 

threshold could reduced both low and high amplitudes of white noise. In models II and III, all of threshold schemes could reduced 

both high and low amplitudes of white noise in same level. Whereas for power-law noise (flicker noise and random walk noise) 

penalized threshold and Stein’s unbiased risk estimate led to reduction of low amplitudes and SureShrink threshold and minimax 

threshold led to reduction of colored noise with high amplitudes. Birgé-Masssart Strategy and universal threshold could reduced 

both low and high amplitudes of colored noise. 
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1. INTRODUCTION 

The developments of space geodesy (i.e. GPS) allowed the 

establishment of world geodetic networks observing 

constellations of satellites permanently. Great numbers of the 

measurements collected by these systems permit to represent the 

displacement of the ground stations in terms of coordinate time 

series. Time series analysis is a quite recent research field in 

space geodesy used in order to better apprehend the temporal 

variability of the physical phenomena (deformations of the 

earth's crust, mass transfers, geodynamic local phenomena, etc).  

 

The most recent studies are interested particularly in the signal 

noise separation (denoising) of the coordinates time series based 

on statistical and mathematical tools. In this contribution we are 

using wavelet - based denoising schemes for time series analysis 

of permanent GPS stations. The wavelet technique permits to 

study the signal at different resolutions to better locate the 

different frequencies.  

 

The wavelet transform decomposes a signal using functions 

(wavelets) well localized in both physical space (time) and 

spectral space (frequency), generated from each other by 

translation and dilation, which is well suited for investigating 

the temporal evolution of periodic and transient signals. The 

wavelet analysis has influenced much research field, of which in 

particular, the applications for the comprehension of the 

geophysics process.  

 

Appling wavelet transform on the permanent time series of GPS 

could separate the noise of the signal, in order to provide certain 

information useful to later geodynamic interpretations. However, 

due to the large amount of computation time and storage needed to 

process of wavelet transform, we are using of fast algorithm for 

computation the wavelet coefficients introduced by Mallat in the 

context of multi-resolution analysis (MRA). The multi-resolution 

analysis allows, by successive filtering, producing a series of 

signals corresponding to an increasingly fine resolution of the 

signal.  

 

Thereby, signal is separated in two components: one representing 

the approximation of the signal (represented by its low-frequency) 

and the other representing its details (represented by its high-

frequency). To separate both, we thus need a pair of filters: a low-

pass filter to obtain the approximation, and a high-pass filter to 

estimate its details. In order to not lose information, these two 

filters must be complementary; the frequencies cut by one must be 

preserved by the other. 

 

The majority of wavelet algorithms use a decimated discrete 

decomposition of the signal. This decomposition has the 

characteristic to be orthogonal and to concentrate information in 

some great wavelet coefficients.  The denoising idea is to conserve 

only the greatest coefficients and put the others (corresponding to 

the noise) at zero before reconstruction of the signal (thresholding 

step).  The thresholding step modifies and process all of the 

discrete detail coefficients at all scale so as to remove noise. We 

applied six types of thresholding techniques in aim to impact of 

thresholding in denoising of time series, which were penalized 



 

 

threshold, Birgé-Masssart Strategy, SureShrink threshold, 

universal threshold, minimax threshold and Stein’s unbiased 

risk estimate. 

 

In order to compare the effect of them in denoising of noise 

components (white noise, flicker noise and random walk noise) 

we have constructed three kinds of stochastic models:  the pure 

white noise model (I), the white plus random walk noise model 

(II) and the white plus flicker noise model (III). The numerical 

computations are performed through the analyzing 10 years (Jan 

2001 to Jan 2011) of daily GPS solutions which are selected of  

264 stations of SOPAC (Scripts orbit and permanent array 

center).  

 

  

2. SPECTRAL ANALYSIS OF GPS TIMES SERIES  

2.1 Noise Analysis 

The one dimensional stochastic process whose behavior in the 

time domain is such that its power spectrum has the form  
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where f is the temporal frequency, 0P  and 0f  are normalizing 

constants, and    is the spectral index. Typical spectral index 

values lie within [−3, 1]; for stationary processes −1 <   < 1 

and for non-stationary processes −3 <   < −1. A smaller 

spectral index implies a more correlated process and more 

relative power at lower frequencies.  

 

Special cases within this stochastic process occur at the integer 

values for  . Classical white noise has a spectral index of 0, 

flicker noise has a spectral index of -1, and a random walk noise 

has a spectral index of -2 (Agnew, 1992). The power spectral 

method can be employed to assess the noise characteristic of 

GPS time series. 

 

The second way is to use (co)variance component estimation 

(VCE) methods. The role of the data series covariance matrix is 

considered to be an important element with respect to the 

quality criteria of the unknown parameters. Therefore, VCE 

methods are of great importance.   

 

The noise components of GPS coordinate time-series, i.e. white 

noise, flicker noise and random walk noise, are usually 

estimated by the maximum likelihood estimation MLE method 

which is a well-known estimation principle. According to this 

theory, the time series of GPS coordinates is composed of white 

noise, flicker noise, and random walk noise with 

variances 2
w , 2

f  and 2
rw , respectively.  

Then, covariance matrix of the time series can then be 

written as: 
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where I  is the mm  identity matrix, and fC  and rwC  are the 

cofactor matrices relating to flicker noise and random walk 

noise, respectively. The structure of xC  matrix is known through 

matrices I , fC  and rwC , but the contributions through 2
w , 2

f  

and 2
rw  are unknown (Williams et al., 2004). In global GPS 

solutions, Williams et al. (2004) showed that a combination of 

white and flicker noise is appropriate for all three coordinate 

components (east, north and up components). 

 

2.2 Wavelet Analysis 

In wavelet domain, significant information can be extracted 

simultaneously in time as well as frequency domain due to time-

frequency localization property of the wavelets, which makes it 

suitable to study the non-stationary signals. The scaling of 

wavelets provides powerful methods to characterize signal 

structures such as fractal signals, singularities etc.  In numerical 

analysis and functional analysis, a discrete wavelet 

transform (DWT) is any wavelet transform for which 

the wavelets are discretely sampled.  

 

As with other wavelet transforms, a key advantage it has 

over Fourier transforms is temporal resolution: it captures both 

frequency and location information (location in time). The DWT 

of a signal  x  is calculated by passing it through a series of filters. 

First the samples are passed through a low pass filter with impulse 

response  g  resulting in a convolution of the two: 
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The signal is also decomposed simultaneously using a high-

pass filter h . The outputs giving the detail coefficients (from the 

high-pass filter) and approximation coefficients (from the low-

pass).  It is important that the two filters are related to each other 

and they are known as a quadrature mirror filter. However, since 

half the frequencies of the signal have now been removed, half the 

samples can be discarded according to Nyquist’s rule. The filter 

outputs are then sub-sampled by 2 (see Fig.1). This decomposition 

has halved the time resolution since only half of each filter output 

characterizes the signal. However, each output has half the 

frequency band of the input so the frequency resolution has been 

doubled (Mallat, 1989). 
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This decomosition is repeated to further increase the frequency 

resolution and the approximation coefficients decomposed with 

high and low pass filters and then down-sampled. This is 

represented as a binary tree with nodes representing a sub-space 

with a different time-frequency localisation. The tree is known as 

a filter bank. 
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Figure 1.  Block diagram of filter analysis, where operator   

denotes to the sub-sampling operator 

Figure 2.  A three level filter bank. 

 

2.2.1 Denoising:  Assume that the observed noisy signal ( y ) 

is composed of true signal x  and Gaussian white noise   

centred independent and identically distributed of variance 2 , 

such as ),0(N~ 2
iid

 . The general way to denoised is to find 

x̂ such that it minimizes the mean square error of x̂ by: 
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Donoho and Johnstone (Donoho and  Johnstone, 1994; Donoho, 

1995) developed a methodology called waveShrink for 

estimating  x .  There are two commonly used shrinkage 

function:   the hard and soft shrinkage functions: 
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where  d  is the detailed coefficient and      is threshold value 

( 0 ).  Determining threshold values    is the key issue in 

waveShrink denoising.  In the following subsection we briefly 

discuss five standard methods for selecting threshold rules.  

 

2.3.1.1 Universal Threshold: This thresholding strategy comes 

from Donoho-Johnstone (Donoho and Johnstone, 1993) in 

which is of the following form: 
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where n  is the signal length and ̂  is the estimated noise 

standard deviation. A robust estimator for the estimating  ̂  

could be comes from 
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where  1d
 is the finest level of detail coefficients. 

 

2.3.1.2 SureShrink Threshold: Donoho and Johnstone (1994) 

developed a technique of selecting a threshold by minimizing 

Stein's unbiased estimator of risk: 
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where  )d,( j
S SURE  is the Stein's unbiased estimator of risk of 

threshold function and jd  represents detail coefficients at level 

j of decomposed signal. For instance, application of Eq. (10) to 

soft threshold function ( Soft
T ) gives: 
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where 1  denotes the indicator function  and  
jN  is number of 

coefficients in level j of decomposed signal. In above equation, 

we assumed that 1 otherwise it could be estimated using Eq. (8) 

and detail coefficients could be normalized using it.  

 

However, this procedure has some drawbacks in situations of 

extreme sparsity of wavelet coefficients. To avoid this drawback, 

Donoho & Johnstone (1995) considered a hybrid scheme of the 

SureShrink threshold by the following heuristic idea: if the set of 

empirical wavelet coefficients is judged to be sparsely represented, 

then the hybrid scheme defaults to the level wise universal 

threshold  
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Otherwise the SURE criterion is used to select a threshold value. 

 

2.3.1.3 Minimax Threshold: minimax threshold is one of the 

commonly used thresholds. The minimax threshold is defined as 

threshold    which minimizes the expression  
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2.3.1.4 Penalized Threshold: This is level wise threshold method 

which is provided by Birge and Massart (2001). In this method the 

detail coefficients could be sort in descending order then 

according the following equation threshold  could be computed: 
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where  1 is the sparsity parameter.   

2.3.1.4 Birge and Massart Strategy Threshold: This is level 

wise threshold method which is also provided by Birge and 

Massart (1997). It uses level-dependent thresholds obtained by 

the following wavelet coefficients selection rule. Let j   be the 

decomposition level, m  be the length of coarsest 

approximation coefficients over 2 and 1 . The numbers j , 

m  and   define the strategy:  at level 1j   (and coarser 

levels), everything is kept. For level i from 1 to j , the jn  

larger coefficients in absolute value are kept with: 
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2.3.2 Wavelet Reconstruction: 

This part denotes how the decomposed components can be 

assembled back into the original signal without loss of 

information. This process is called reconstruction, or synthesis. 

The mathematical manipulation that effects synthesis is called 

the inverse discrete wavelet transform (IDWT). Where wavelet 

analysis involves filtering and down-sampling, the wavelet 

reconstruction process consists of up-sampling and filtering. 

 

The reconstruction filters are designed in such a way to cancel 

out the effects of aliasing introduced in the wavelet 

decomposition phase. The reconstruction filters together with 

the low and high pass decomposition filters, forms a system 

known as quadrature mirror filters. For a multilevel analysis, the 

reconstruction process can itself be iterated producing 

successive approximations at finer resolutions and finally 

synthesizing the original signal. 

 

3.  NUMERICAL ANALYSIS 

 

GPS data are collected from Scripps Orbit and Permanent Array 

Center (SOPAC), which include archive high-precision GPS 

data particularly for the monitoring of earthquake hazards, 

tectonic plate. Given positions by SOPAC are provided in 

ITRF2000, and include both horizontal and vertical velocities 

and their accuracies. All the chosen stations (264 permanent 

GPS stations) have individual and continuous solutions up to 10 

years, between January 2001 and January 2011. Fig. 3 

illustrates the sites of SOPAC across Western United States, 

Western Canada and Alaska.  

 

In order to compare the effect of threshold methods in denoising 

of noise components (white noise, flicker noise and random 

walk noise) we have constructed three kinds of stochastic 

models:  the pure white noise model (I), the white plus random 

walk noise model (II) and the white plus flicker noise model 

(III).  

 

To graph the results, we used of angle histogram plot which is a 

polar plot showing the distribution of values grouped according to 

their numeric range. This type of graph shows the distribution 

of theta in 20 angle bins or less. The radial angle, expressed in 

radians, determines the angle of each bin from the origin. The 

length of each bin reflects the number of elements in theta that fall 

within a group, which ranges from 0 to the greatest number of 

elements deposited in any one bin (see Fig. 4). 

 
Figure 3.  Location of selected sites in the study area. 

 

First row in the illustration is related to the distributions of white 

noise in Up, North and East components, respectively. The second 

row is related to estimated white noise after denoising by 

penalized threshold, the third row shows the estimated white noise 

after denoising by Birge and Massart strategy threshold, the fourth 

row shows the estimated white noise after denoising by hybrid 

scheme of the SureShrink threshold, the fifth row is illustrated  the 

estimated white noise after denoising by universal threshold, the 

sixth row shows the estimated white noise after denoising by 

minimax threshold and the seventh row is related to the estimated 

white noise after denoising by Stein unbiased risk estimates.  

 

Fig. 4 shows the high level of white noise (in model I) in vertical 

component compared to horizontal components.  Comparison of 

different type of threshold methods shows that: all methods could 

reduce the distribution of white noise in horizontal components in 

a same level. Universal threshold and Birge and Massart strategy 

threshold could reduce both low and high amplitudes of white 

noise in vertical components. However, minimax threshold and 

hybrid scheme of the SureShrink threshold could decrease only 

large amplitudes. Distribution of white noise after applying 

penalized threshold shows the distribution of low amplitudes is 

reduced and distribution of high amplitudes is increased. 

 

Figs. 5 and 6 show the distribution of white noise in model II and 

model III, respectively. It can be seen by comparison of Figs, 4 

and 5 and 6 that there is no significant difference between the 

effects of threshold procedures in denoising of horizontal 

components. In model (I), distribution of white noise in raw 

vertical component data for both of low and high amplitudes are 

nearly equal. In model (II), distribution of white noise in raw 

vertical component data for low amplitudes is less than high 

amplitudes. In model (III), distribution of white noise in raw 

vertical component data for high amplitudes is less than low 

amplitudes.  

 

Fig. 7 illustrates the estimated random walk noise in model (II). 

Comparison of types of threshold procedures shows that the level 

of random walk noise (in both low and high amplitudes) with 



 

 

universal threshold and Birge and Massart strategy threshold 

has reduced significantly.  

     
Figure 4.  Effects of different threshold methods in denoising of 

white noise (model I). 

 
Figure 5.  Effects of different threshold methods in 

denoising of white noise (model II). 

 
Figure 6.  Effects of different threshold methods in 

denoising of white noise (model III). 

 
Figure 7.  Effects of different threshold methods in 

denoising of random walk noise (model II). 



 

 

 
Figure 8.  Effects of different threshold methods in 

denoising of flicker noise (model III). 
 

Fig.  8 illustrates the estimated flicker noise in model (III). As it 

can be seen in this illustration, the level of flicker noise (in both 

low and high amplitudes) with universal threshold and Birge 

and Massart strategy threshold has reduced significantly. 
However, the other methods could not reduce it significantly. 

 

4.  CONCLUSIONS 

 

In this paper we applied six types of thresholding techniques in 

aim to impact of thresholding in denoising of time series, which 

were penalized threshold, Birgé-Masssart Strategy, SureShrink 

threshold, universal threshold, minimax threshold and Stein’s 

unbiased risk estimate. In order to compare the effect of them in 

denoising of noise components (white noise, flicker noise and 

random walk noise) we have constructed three kinds of 

stochastic models:  the pure white noise model (I), the white 

plus random walk noise model (II) and the white plus flicker 

noise model (III). The results are: 

 

1. In model (I), all methods could reduce the distribution of 

white noise in horizontal components in a same level. Universal 

threshold and Birge and Massart strategy threshold could 

reduce both low and high amplitudes of white noise in vertical 

components. Minimax threshold and hybrid scheme of the 

SureShrink threshold could decrease only large amplitudes. 

Distribution of white noise after applying penalized threshold 

shows the distribution of low amplitudes is reduced and 

distribution of high amplitudes is increased. 

 

2. In model (I), distribution of white noise in raw vertical 

component data for both of low and high amplitudes are nearly 

equal. In model (II), distribution of white noise in raw vertical 

component data for low amplitudes is less than high amplitudes. 
In model (III), distribution of white noise in raw vertical 

component data for high amplitudes is less than low amplitudes.  

 

3. In models (II) and (III), level of random walk noise and flicker 

noise (in both low and high amplitudes) with universal threshold 

and Birge and Massart strategy threshold has reduced 

significantly. However, the other methods could not reduce it 

significantly. 
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