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ABSTRACT: 

 

We propose a numerical solution to systems of redundant systems of observation equations.  The basic characteristics of this 

solution are:  it is based on a topological, grid-search approach in the Rn space; is suitable for complicated functions deriving 

from various geodetic observations of deformation monitoring and analysis; it can incorporate weights of observations and 

compute variance-covariance matrices, i.e. overcome the basic limitations of common numerical solutions.  The success of this 

solution is depicted in the case of the adjustment of a leveling network. 

 

1. INTRODUCTION 

Redundant systems of equations are traditionally used on the 

basis of algebraic techniques (least squares) which require 

linearization of certain functions. In various fields of geodesy 

these functions are simple (mostly equations defining distances 

or azimuths between two points) and the overall solution of the 

system totally effective.  

However, in the broader field of Geodesy, there exist cases of 

redundant systems of equations based on more complicated 

functions; for instance in the case of elastic dislocation analysis 

in a seismic deformation (Okada, 1985) or of magma source 

identification in an active volcano (Feng and Newman, 2009).  

In such cases the traditional least squares approach is not 

possible, and either numerical solutions or grid-search 

solutions minimizing a certain parameter or maximizing the 

frequency of a certain parameter are adopted (Stiros et al., 

2010).    

The basic shortcomings of these solutions are: (1) they cannot 

accept weighted observations; (2) they cannot provide a full 

variance covariance matrix; (3) the usually can provide 

solutions for equations with up to 3 variables; (4) in the cases 

the unknowns are more than 2, some of the estimates are highly 

correlated.   

In an effort to solve this problem we propose a topological, 

grid-based solution which permits to include weights for 

observations and to obtain variance-covariance matrices. 

 

2. METHODOLOGY 

We assume a system of n equations   with m unknown 

variables           , …    , defined by the equations  
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where, j = 1, 2,… n, i = 1, 2,…m and   : n measurements each 

with uncertainty    . 

It is also assumed that the system of equations (1) has a 

solution  
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in Rm which is subject to the conditions 
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The geometric/topological significance of this hypothesis is 

that there exists a common section in the solution of all 

equations, and this common section represents the solution of 

the system of equations. 

Equation (3) defines a rectangular or a hyper-rectangular in Rm.  

This hyper-rectangular can be defined by a hyper-grid G, with 

spacing si constant for any two successive points in axis i.   

Each measurement ℓj in eq. (1) is characterized by an 

uncertainty   .  Introducing a parameter kj, we define a 

parameter  
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From eq. (1) we can derive the following inequality  
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A cloud Aj of points of the hyper-grid G will satisfy eq. (5) 

because of the hypothesis of equation (1).  This cloud will 

obviously depend on the selection of kj. 

Similarly, for each of the n equations (5) a cloud of grid points 

will be defined, and the common section of all these clouds of 

grid-points 
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will represent a cloud of points approximating (containing) the 

solution of the system of equations (1).   The dimensions and 

the very existence of the cloud of points B≠0 will depend of 

course on the selection of kj, which in fact represents an inverse 

weight of observations.  Finally, from the m-dimensional cloud 

of grid points their mean value will represent an estimate of the 

solution x  of the system of defined by eq. (2) and the 

associated variance-covariance matrix Q can be computed.  

The overall solution can be obtained using a simple algorithm. 

This approach can be regarded as a generalization of the 

determination of the coordinates of a GPS receiver.  

Measurement of distances from a receiver (the coordinates of 

which are unknown) to certain satellite permits to locate the 

receiver on a sphere, the centre of which is the known position 



of the satellite and its radius is the measured distance Si.   If the 

uncertainty  i of this distance is taken into account, the location 

of the satellite will be in the space between homocentric 

spheres with radii Si+ i, Si- i.  Similar measurements from two 

other satellites permit to locate the receiver at the common 

section of the three different concentric spaces. 

 

3. CASE STUDY 

The proposed topological approach for numerical integration 

was applied in the case study of a leveling network, but it can 

be used to solve any other system of non-linear equations. We 

examine a four-point leveling network with coordinates

 1 2 3{ , , , } 0.0,11.110,1  4.560,1  3.310  (m)ox x x x x  . We produced a 

number of measurements with a standard error of     = ±4 mm 

between point O (assumed of known coordinate) and the other 

points, as shown in Table 1.  Based on these measurements we 

shall try to estimate the three coordinates x  = ( 1 2 3, ,x x x ) and 

their variance-covariance matrix. This is a simple linear 

problem in the R3 space. 

 

 

 
 

Figure 1. The 4-point leveling network (height of point O 

assumed known) of our case study. The six observations    are 

shown. 

 

 

Measurements (m) 

1
l  11.113 

2
l  14.562 

3
l  13.314 

4
l  3.448 

5
l  2.204 

6
l  -1.252 

 

Table 1. Measurements ℓj  of the elevation difference between 

the four points. 

 

 

Each of the six measurements leads to a linear equation of the 

type  
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and adopting for simplicity weights kj=0.75, a flat value of 

δj=3mm was defined for all observations.    

The next step was to define the 3-dimensional grid G necessary 

for our solution.   We computed a preliminary solution and 

then selected a 3-D grid around this solution.  This grid was 

selected with a total width of 2cm (=5 j) in each of the three 

axes and step s = 0.5 mm between each grid point in each axis; 

hence it was defined by 41 points in each axis and 413 = 68,921 

grid points in total.  

The following step was to define the 6 inequalities of equations 

(5), of the type 
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with         , corresponding to each of the 6 observations 

(Table 2), shown below, and define the set (cloud) of grid 

points Aj satisfying each one of them.   This was done using a 

grid-search algorithm which identifies the points which satisfy 

each of the inequalities.  Then we found the common section of 

all 6 clouds of grid points.   In graph form, the clouds of points 

A1 to A6 and B are shown in Fig. 2. At a final step we 

estimated the mean value of their coordinates and the elements 

of the corresponding variance-covariance matrix (Table 3).   

The net adjustment was made also on the basis of conventional 

least square techniques, and the results are also summarized in 

Table 3. Estimates of coordinates from both techniques are 

quite similar, but the variances in the topological approach are 

much larger. These variances can of course been optimized 

adopting a different “weight” factor kj. 

 

 

equation system cloud  

|x1 – l1| < δj A1 

|x2 – l2| < δj A2 

|x3 – l3| < δj A3 

|(x2 - x1) – l4| < δj A4 

|(x3 - x1) – l5| < δj A5 

|(x3 – x2) – l6| < δj A6 

 

Table 2. The system of inequalities formed and the 

corresponding cloud of points Aj satisfying each inequality. 

 

 
elevation real values our estimates (±σ) lsqr estimates (±σ) 

x1 11.110 11.1121 (±0.00225) 11.1125 (±0.00110) 

x2 14.560 14.5629 (±0.00225) 14.5627 (±0.00110) 
x3 13.310 13.3137 (±0.00250) 13.3137 (±0.00110) 

 

Table 3.  Hypothetical and adjusted coordinates (in m) of the 

network. 

 

 



 

Figure 2. Perspective view of the sets (clouds) of grid points Aj 

and of their common section B. 

 

 

4. DISCUSSION AND CONCLUSION 

 

The proposed approach permits a numerical, grid-search-based 

solution in redundant systems of equations free of the 

limitations noticed in the Introduction.  In particular, weighted 

observations and full variance-covariance matrices can be 

computed.  In addition, simultaneous solutions for systems of 

equations with more than 3 unknown variables can be obtained, 

avoiding highly correlated solutions obtained by other 

numerical, especially grid-search techniques. 
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