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Abstract: Main problem in data analysis is a construction of mathematical models relating 
environmental variables and patterns of deformation. In case of the dam environmental 
variables are temperature, water level in a reservoir, etc.  The most commonly used method of 
data analysis is statistical modelling of the data. The partial least-squares regression (PLSR) is 
a statistical method which finds a linear model describing some predicted variables in terms 
of other observable variables. The partial least-squares regression (PLSR) is a multivariate 
statistical algorithm, which can overcome some of the shortcomings of other approaches, for 
instance, the multiple correlation among independent variables. PLSR methodology is 
presented on the example of an earth dam located in central China.  A three dimensional 
deformation analysis for a single point on the dam is performed. The analysis consists of a 
data fitting, deformation prediction, and contribution analysis of individual factors. The 
presented in the paper research shows that PLSR results are more reliable and have the better 
integrity than the other methods.  

1. INTRODUCTION 

Data analysis is one of the essential components of interpretation of dam deformation 
monitoring, because the data from multiple observation epochs must be analysed (Wu, 1990; 
Li, 1989). Information of the time and spatial connections of the observations, the specific 
deformation characteristics, and the weak links should be identified so that the deformation 
process and trends can be identified. The goal of the data analysis is to generate the 
information which can be used in a physical interpretation of deformations and in prediction 
of behaviour of the analysed or similar engineering structure.    

There may be a large volume of observation data of points located on the surface and within a 
dam structure. Statistical methods are often employed to model the data in order to describe 
the deformation patterns. Commonly, the water level, temperature, time, and other quantities 
are directly measured and they are considered as observable variables. There are inevitably 
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certain multiple correlations among these variables and deformation so that the traditional 
statistic approaches may run into numerical difficulties such as model deficiency.  

The partial least-squares regression (PLSR) is a statistical method which finds a linear model 
describing some predicted variables in terms of other observable variables. The partial least-
squares regression is a multivariate statistical algorithm, which can overcome some of the 
shortcomings of other approaches, for instance, the multiple correlation among independent 
variables. The partial least squares regression has been applied to multivariate data analysis in 
chemistry, economics, medicine, psychology, and some other disciplines (Ren, 1997; Wang, 
1999; Rosipal and Krämer, 2006). PLSR generalizes and combines characteristic features 
from multivariate regression (MR), canonical correlation analysis (CCA), and principal 
component analysis (PCA) without imposing their restrictions. It is suitable for the situation 
when an applied method needs to predict a set of dependent variables from a large set of 
independent variables, especially in case the independent variables are highly collinear. The 
solution from PLSR is more effective and more reliable comparing to MR, which in the past 
was widely employed in this type of applications. PLSR can extract the integrated 
independent variables that may interpret the dependent variables by decomposing and 
filtering the data. The data can be modelled with the better fitting and predictive effects and 
without the limitation to the number of the sample points. PLSR can be also used in case of 
smaller number of data, as it happens often at the early stage of the monitoring.    

2. PARTIAL LEAST SQUARES 

Assume that one has q dependent (response) variables b1, b2… bq, and p independent 
(predictor) variables a1, a2… ap. In order to study the relationship between the response 
variables and the predictor variables, the data from n observation points are available denoted 
as An×p = [ A1,A2…,Ap ] and Bn×q = [ B1,B2…,Bq ] (Wang, 1999).  

From the ordinary multivariate linear regression, the least squares solution can be given by 

1( )T TB A A A A B
∧

−=                                                                 (1)    

under the assumption that the sample data is satisfied with the Gauss–Markov theorem. B is 
called the least-squares solution of B wherever ATA is invertible. This solution does not exist 
if ATA is rank defect, for example, in case there is high collinear in A. A rank defect ATA can 
practically bring a series of complications. However, the PLSR will be not affected.      

Principally, the PLSR extracts new factors from both the variation of A and B. In PLSR only 
the variation of A is used, not as in the case of PCA analysis. These new factors are 
commonly called latent variables or components that will play the same role as A and B. In 
the beginning of the analysis, the latent components t1 and u1 are extracted from A and B, 
respectively, as the linear combinations of a1, a2… ap  and  b1, b2… bq  based on the following 
requirements: 

(1)  t1 and u1 should carry as much information as possible from the raw data A and B, 

(2)  t1 and u1 should have the maximal correlation. 

These means that t1 and u1 will represent A and B as well as possible and t1 can provide the 
strongest capability to interpret u1.  
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After the extraction of t1 and u1, t1 will be regressed with respect to A, and u1 with respect to 
B as well. Then the further latent components t2 and u2 will be extracted using the residual 
information of A and B after t1 and u1. This procedure will be continued until one reaches the 
latent components tm and um, which can provide a satisfied regression together with the past 
extracted components.  

How to determine the better regression equations is even more important. In many cases, 
PLSR does not need all of the latent components to construct the regression model, but select 
first m components for m ≤ rank(A) under certain cut-off criteria as the PCA does. These m 
components could construct a satisfied predictive model whilst the follow-up components 
cannot make a significant contribution to the interpretation of the response variable vector B. 
In this case more components will not bring any more beneficial influence on the cognition of 
statistic trends in the data, and may mislead by false predictive conclusion (Wang , 1999). 

One can observe the predictive improvement to decide how many latent components should 
be selected each time after the extraction of each latent component. Generally, one can 
construct individual regression equations by taking out each of the observation points one by 
one sequentially and use the corresponding models to predict those points after h latent 
components are extracted the goodness of the predictions can be used for the modeling 
evaluation.  

Consider that bj ( j = 1,2,…,p ) is predicted as Bhj(-i) at the i-th data point. For each of the 
response variables with all of n points the sum of the squares of the prediction errors are 
defined as 

                    ∑
=

−−=
n

i
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The total prediction error PRESSh   for B is defined as the total sum of the errors from all of 
the response variables: 
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=

=
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Obviously, the magnitude of this error is sensitive with the changes of the points and will also 
vary with the goodness of the predictive ability of the models based on the available data. 
Besides, a model can be constructed from all the data points based on the h latent 
components.  

The predicted value of each of the response variable for the i-th data point is written as Bhji. 
Then one can define SShj as the sum of the squares of the residuals: 

                                 ∑
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The total error is given by 

            ∑
=

=
p

j
hjh SSSS

1

                                                                 (5) 

Generally, total prediction error PPESSh is larger than total error SSh, SSh is smaller than SSh-1.  
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The next step is to compare total error SSh-1 with total prediction error PPESSh.  SSh-1 is the 
total regressive error based on all of the data points, but using the first h-1 latent components. 
PPESSh is derived based on the first h components and affected by the disturbance error of the 
sample data. If PPESSh is reasonably smaller than SSh-1, the predictive accuracy is 
considerably improved by adding one more latent component. As a general rule, it is 
beneficial if one more latent component is extracted whilst  

PPESSh /SSh-1 ≤0.952.            

Otherwise, it is not necessary to take an account into the next latent component because the 
total prediction error can not significantly be reduced. 

3. EXAMPLE OF AN EARTH DAM 

An example given is the three dimensional deformation analysis of an earth dam situated in 
the central China. The dam is build of the clay soil using the slope wall structure. The dam is 
1223 m long, 56 m high, and has the maximum elevation of 162 m (MSL) of its top. 
Following factors have impact on the dam deformation: geometry of the dam, construction 
materials, construction method, topography and geological condition of the dam foundation, 
and the changes of the water level.  

Three dimensional analysis of the monitored deformation from 1975 year to 1982 year of a 
point on the surface of the dam is performed.  The monitored point is located on the axis of a 
dam.  In the analysis, X is the horizontal displacement in a perpendicular direction of the dam 
axis (parallel to the river flowing direction), Y is the horizontal displacement perpendicular to 
X, and Z is the vertical displacement. 

Eight predictor variables were assumed based on the characteristics of the earth dam and 
practical experience as follows: 

 - aging effect: θ, ln θ, θ/(θ+1) , θ2, θ-0.5  (θ  is the time in year), 

- water level: H, H2, H3（H is the upstream water level in meter). 

The variance–inflation factors of eight selected variables and deformation are shown in the 
Table 1. 

θ  lnθ  θ /(θ +1) θ 2 θ -0.5 H H2 H3 X Y Z 

1.8×105 1.3×106 6.9×106 10 3.1×106 1.3×103 0.06 3.3×10-7 0.05 0.08 0.09 

Table 1 - The variance-inflation factors of the variables 

In general, there is high collinearity among the variables if the variance-inflation factor is 
bigger than 10 (Wang, 1999). Hence, the ordinary least-squares regression here encounter 
with difficulties. The cross validation with respect to the response variables is shown in the 
Table 2. 

 X Y Z 
h 1 2 3 4 1 2 1 2 3 

Qhk
2 0.626 0.456 0.347 -0.255 0.671 -0.034 0.824 0.730 -0.121 

Table 2 - The cross validation 
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The critical value of Q2
hk(=1-PRESSh/SSh-1) is equal to 0.0975 at the 95% confidential level. 

The best predictive models for X, Y and Z can be constructed by selecting h = 3, 1, 2, 
respectively. The 1st extracted latent components t1 and u1 are correlated at –0.939. Their 
relationship is given in Figure 1.  

The correlation among the extracted components and predictor variables are given in the 
Table 3. As can be seen in the Table 3, 79.7% of the information from the raw data is used 
after the extraction of the very first latent components t1 and u1. Another 19.7% of the 
information left in the residuals is added to the analysis after the 2nd latent components t2 and 
u2 are extracted. But the extraction of the 3rd latent components t3 and u3 can contribute only 
0.5% information to the data analysis. In total, 90.9% of the information in X can be 
interpreted by using t1, t2 and t3. t1 can represent Y up to 69.7% while 96.2% of the 
information in Z can be extracted by t1 and t2.  

 

 

3

3

u

a t. b

45 t
5 4 3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

 
Figure 1 - Relation between 1t  and 1u  

 

 

 θ  lnθ  θ /(θ +1) θ 2 θ -0.5 H H2 H3 X Y Z 

t1 -0.982 -0.967 -0.946 -0.982 0.953 -0.750 -0.755 -0.760 -0.813 -0.835 0.917 

u1 0.957 0.968 0.967 0.935 -0.968 0.555 0.562 0.569 0.924 0.853 -0.957 

t2 -0.177 -0.255 -0.312 -0.109 0.295 0.661 0.655 0.649 -0.419 0.154 0.349 

u2 -0.127 -0.276 -0.295 -0.034 0.274 0.554 0.548 0.541 -0.536 0.229 0.340 

t3 0.065 -0.024 -0.085 0.154 0.067 -0.021 -0.021 -0.022 -0.269 0.077 0.044 

u3 0.042 -0.019 -0.057 0.111 0.046 -0.014 -0.015 -0.016 -0.375 0.153 0.034 

Table 3 - The correlation among the extracted components and the predictor variables 
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The displacements and the fitting curves are given in Figure 2, 5 and 8. The residuals are 
plotted in Figure 3, 6 and 9. The decomposed fitting values with respect to the aging variables 
and the water level variables, respectively, are drawn in the Figure 4, 7 and 10.   

In the example, all of the predictor variables made their contributions to the interpretation of 
the displacements in certain extent. The displacements in three directions are positively 
proportional to the water level. The aging variables had relatively strong influence on the X 
component whilst the water level variables had relative small impacts on it. The effect on the 
other two components from the water level appears periodically. The displacements in Y and 
Z components became bigger with the time (the aging variables). These conclusions are 
consistent with the deformation trends of an earth-rock dam. All of the regression residuals 
are small and randomly equal to ZERO, which are characterized by random errors.    

 The predictive ability of the models was proved through the random sampling from the raw 
data points (Wang, 1999). First, 45 sample points were used to construct the models and 6 
sample points left for the evaluation of the model predictive ability. The goodness of fit for 
the models is: ̂ 0.998xσ = , ˆ 0.737yσ = , and ˆ 0.686zσ =  while the RMS errors for the 6 

validation points were ̂ 0.621xσ = , ˆ 0.652yσ = , ˆ 0.852zσ = .    

The stepwise regression was also performed for the same observation data and its results was 
compared with the results of PLSR (Table 4). 

 

 Stepwise PLSR 
Modelling 0.8115 0.4793 

X 
Predictive 1.6068 0.7668 
Modelling 0.5871 0.5309 

Y 
Predictive 1.0871 0.4336 
Modelling 0.4778 0.4601 

Z 
Predictive 1.1561 0.6972 

 

Table 4 - Comparison between the stepwise regression and PLSR 

 

 

Figure 2 -  Displacement and the fitting curve of X-direction 
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Figure 3 -  Residual curve of X-direction 

 

Figure 4 -  Decompsed fitting curve of X-direction 

 

Figure 5 -  Displacement anf fitting curve of Y-direction 
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Figure 6 -  Residual curve of Y-direction 

 

Figure 7 -  Decomposed fitting curve of Y-direction 

 

Figure 8 -  Displacement and the fitting curve of Z-direction 



 

 
 

 9

 

Figure 9 -  Residual curve of Z-direction 

 

Figure 10 -  Decomposed fitting curve of Z-direction 

4. CONCLUSIONS 

The partial least squares regression has the better ability to deal with the collinearity among 
the predictor variables. It can take account into all of the observed predictor variables to 
construct the models and maximize the correlation between the response variables and the 
observed predictor variables. The PLSR can also be applied to the multivariate response 
variables so the spatial deformation analysis becomes possible. The given example shows that 
the PLSR shows good potential for the processing of dam monitoring data in practice. 
 
References  

Wu, Zhong-Ru (1990): Theory of Safety Monitoring of Hydraulic Constructions andits 
Applications, Publishing House of He-Hai University, August 1990. (Chinese) 

Li, Zhen-zhao (1989): Observation Data Analysis of Concrete Dams，Publishing Houseof 

Hydraulic and Electric Industry，July 1989. (Chinese) 

Ren, Ruo-Si (1997): Multivariate Data Statistic Analysis- Theory, Methods and Applications, 

Publishing House of Defense Industry，June 1997. (Chinese) 



 

 
 

 10

Wang, Hui-Wen (1999): Partial Least Squares Method and Its Applications, Publishing 

House of Defense Industry，April 1999. (Chinese) 

Rosipal, R. and N. Krämer, (2006): Overview and Recent Advances in Partial Least Squares, 
in Saunders et al (Eds.): SLSFS (Subspace, Latent Structure and Feature Selection 
Workshop) 2005, LNCS (Lecture Notes in Computer Science) 3940, pp. 34-51, 2006 

 

Corresponding author contacts 
 
Nianwu DENG 

deng@unb.ca 
Department of Geodesy and Geomatics Engineering, University of New Brunswick 
Fredericton, N.B., E3B 5A3  
Canada  


