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Abstract: Main problem in data analysis is a constructiomaithematical models relating
environmental variables and patterns of deformationcase of the dam environmental
variables are temperature, water level in a resemetc. The most commonly used method of
data analysis is statistical modelling of the datee partial least-squares regression (PLSR) is
a statistical method which finds a linear modelcdiéing some predicted variables in terms
of other observable variables. The partial leagtses regression (PLSR) is a multivariate
statistical algorithm, which can overcome somehef $hortcomings of other approaches, for
instance, the multiple correlation among indepenhdeariables. PLSR methodology is
presented on the example of an earth dam locateenitral China. A three dimensional
deformation analysis for a single point on the darperformed. The analysis consists of a
data fitting, deformation prediction, and contribat analysis of individual factorsThe
presented in the paper research shows that PLSIRsrase more reliable and have the better
integrity than the other methods.

1. INTRODUCTION

Data analysis is one of the essential componentintefpretation of dam deformation

monitoring, because the data from multiple obsé&watpochs must be analysed (Wu, 1990;
Li, 1989). Information of the time and spatial centions of the observations, the specific
deformation characteristics, and the weak linksukhbe identified so that the deformation
process and trends can be identified. The goalhef data analysis is to generate the
information which can be used in a physical intetation of deformations and in prediction
of behaviour of the analysed or similar engineestrgcture.

There may be a large volume of observation dafuwits located on the surface and within a
dam structure. Statistical methods are often engaldp model the data in order to describe
the deformation patterns. Commonly, the water leteghperature, time, and other quantities
are directly measured and they are considered senaible variables. There are inevitably
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certain multiple correlations among these varialsled deformation so that the traditional
statistic approaches may run into numerical diffies such as model deficiency.

The partial least-squares regression (PLSR) iat&sstal method which finds a linear model
describing some predicted variables in terms oémtbservable variables. The partial least-
squares regression is a multivariate statistiogprghm, which can overcome some of the
shortcomings of other approaches, for instancentbliple correlation among independent
variables. The partial least squares regressioméas applied to multivariate data analysis in
chemistry, economics, medicine, psychology, andesother disciplines (Ren, 1997; Wang,
1999; Rosipal and Kramer, 2006). PLSR generalizes @mbines characteristic features
from multivariate regression (MR), canonical caateln analysis (CCA), and principal
component analysis (PCA) without imposing theitnieBons. It is suitable for the situation
when an applied method needs to predict a set pérakent variables from a large set of
independent variables, especially in case the m@gnt variables are highly collinear. The
solution from PLSR is more effective and more tdkacomparing to MR, which in the past
was widely employed in this type of applicationsLSIR can extract the integrated
independent variables that may interpret the dep@ndariables by decomposing and
filtering the data. The data can be modelled wlhih better fitting and predictive effects and
without the limitation to the number of the samptents. PLSR can be also used in case of
smaller number of data, as it happens often agdinly stage of the monitoring.

2. PARTIAL LEAST SQUARES

Assume that one hag dependent (response) variables b,... k, and p independent
(predictor) variablesy, &... &. In order to study the relationship between thgpoase
variables and the predictor variables, the datanfinoobservation points are available denoted
asAnxp= [ A,A...,A ] andBpxg = [ B1,B>...,B;] (Wang, 1999).

From the ordinary multivariate linear regressidr keast squares solution can be given by
O
B=AAA"AB @

under the assumption that the sample data is isatigfith the Gauss—Markov theoreB.is
called the least-squares solutionBofvhereverA'A is invertible. This solution does not exist
if ATA is rank defect, for example, in case there is leiglfinear inA. A rank defecA'A can
practically bring a series of complications. Howewke PLSR will be not affected.

Principally, the PLSR extracts new factors fromhbtbte variation oA andB. In PLSR only
the variation ofA is used, not as in the case of PCA analysis. Timese factors are
commonly called latent variables or components wiltplay the same role a& andB. In
the beginning of the analysis, the latent compagnandu, are extracted fromd\ andB,
respectively, as the linear combinationagfa... 8 and by, b,... by based on the following
requirements:

(1) t; andu; should carry as much information as possible ftoenraw datah andB,
(2) t; andu; should have the maximal correlation.

These means that andu; will representA andB as well as possible arigdcan provide the
strongest capability to interpret.
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After the extraction of; andug, t; will be regressed with respectA9 andu; with respect to
B as well. Then the further latent componetandu, will be extracted using the residual
information of A andB aftert; andu;. This procedure will be continued until one reactie
latent components, andun, which can provide a satisfied regression togeitvigr the past
extracted components.

How to determine the better regression equatiorsvén more important. In many cases,
PLSR does not need all of the latent component®nstruct the regression model, but select
first m components fom < rank(A) under certain cut-off criteria as the PCA doeseSEm
components could construct a satisfied predictive@eh whilst the follow-up components
cannot make a significant contribution to the iptetation of the response variable vedor

In this case more components will not bring any erfeeneficial influence on the cognition of
statistic trends in the data, and may mislead Isgfaredictive conclusion (Wang , 1999).

One can observe the predictive improvement to @ebmv many latent components should
be selected each time after the extraction of datdnt component. Generally, one can
construct individual regression equations by talongeach of the observation points one by
one sequentially and use the corresponding modelgredict those points aftdr latent
components are extracted the goodness of the fpicediccan be used for the modeling
evaluation.

Consider thaty (j = 1,2,...,p) is predicted a8 at thei-th data point. For each of the
response variables with all of n points the sunthaf squares of the prediction errors are
defined as

PRES§ = i(Bij - th(—i))2 (2)

The total prediction erroPRES$ for B is defined as the total sum of the errors fronoéll
the response variables:

PRESS = iPRESﬁ A3)

Obviously, the magnitude of this error is sensitiith the changes of the points and will also
vary with the goodness of the predictive abilitytbé models based on the available data.
Besides, a model can be constructed from all thi&a geints based on thk latent
components.

The predicted value of each of the response varifal thei-th data point is written aBp;.
Then one can defin®$; as the sum of the squares of the residuals:

S§, = Z(Bij - thi)2 (4)
i=1
The total error is given by
p
S§ =2 S§ )
j=1

Generally, total prediction err@PESgis larger than total err@®@$, SS is smaller tharsS.;.
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The next step is to compare total er&#%.; with total prediction erroPPES& S$. is the
total regressive error based on all of the datatppbut using the firdt-1 latent components.
PPES&is derived based on the fitstomponents and affected by the disturbance efribreo
sample data. IfPPES$ is reasonably smaller thaB$., the predictive accuracy is
considerably improved by adding one more latent mmment. As a general rule, it is
beneficial if one more latent component is extraatilst

PPES$/S$.1<0.95.

Otherwise, it is not necessary to take an accaountthe next latent component because the
total prediction error can not significantly be wedd.

3. EXAMPLE OF AN EARTH DAM

An example given is the three dimensional deforomatinalysis of an earth dam situated in
the central China. The dam is build of the clay ssing the slope wall structure. The dam is
1223 m long, 56 m high, and has the maximum elematf 162 m (MSL) of its top.
Following factors have impact on the dam defornmatigeometry of the dam, construction
materials, construction method, topography andaggcdl condition of the dam foundation,
and the changes of the water level.

Three dimensional analysis of the monitored defdionafrom 1975 year to 1982 year of a
point on the surface of the dam is performed. Moaitored point is located on the axis of a
dam. In the analysi¥ is the horizontal displacement in a perpendicdiggction of the dam
axis (parallel to the river flowing directiony,is the horizontal displacement perpendicular to
X, andZ is the vertical displacement.

Eight predictor variables were assumed based orchheacteristics of the earth dam and
practical experience as follows:

- aging effectd, In 0, 0/(6+1) , 6%, 6°° (8 is the time in year),
- water levelH, H? H® ( H is the upstream water level in meter).

The variance—inflation factors of eight selectedialdes and deformation are shown in the
Table 1.

6 In@ oo+ | @2 90> H H? H3 X | Y z

1.8x10° 1.3x1¢° 6.9x10° 10 | 3.1x1¢° | 1.3x10° | 0.06 3.3x107 0.05 | 0.08| 0.09

Table 1 - The variance-inflation factors of theiahles

In general, there is high collinearity among theiatales if the variance-inflation factor is
bigger than 10 (Wang, 1999). Hence, the ordinaagtksquares regression here encounter
with difficulties. The cross validation with respeo the response variables is shown in the
Table 2.

X Y YA

h 1 2 3 | 4] 1] 2 1 2 | 3

Qhkz 0.626 0.456 0.347 -0.254 0.671 -0.034 0.824 0.7130 0.121

Table 2 - The cross validation
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The critical value ofQ%(=1-PRES§SS.1) is equal to 0.0975 at the 95% confidential level.
The best predictive models fot, Y and Z can be constructed by selecting h = 3, 1, 2,
respectively. The 1st extracted latent componénendu; are correlated at —0.939. Their

relationship is given in Figure 1.

The correlation among the extracted components paadictor variables are given in the
Table 3. As can be seen in the Table 3, 79.7% efirtfformation from the raw data is used
after the extraction of the very first latent compotst; and u;. Another 19.7% of the
information left in the residuals is added to thalgsis after the 2nd latent componentand

up are extracted. But the extraction of the 3rd latetmponents; andus can contribute only
0.5% information to the data analysis. In total,990 of the information inX can be
interpreted by usingi, t; and ts. t; can represenY up to 69.7% while 96.2% of the
information inZ can be extracted ly andt,.

at+b
-1
2
-3 -3
-5 4 -3 2 -1 0 1 2 3 4
-5 t 4
Figure 1 - Relation between and u,
- 2
& |In@ | enewy | 8% 6% H | H* | H | X Y z
tl -0.982 -0.967 -0.946 -0.982 0.95 -0.750 -0.765 760.| -0.813 -0.835 0.917
Uy 0.957 0.968 0.967 0.935| -0.96 0.555 0.562 0.569 9240. 0.853 -0.957
t2 -0.177 -0.255 -0.312 -0.109 0.29 0.66[1 0.6%5 0.649-0.419 0.154 0.349
U -0.127 -0.276 -0.295 -0.034 0.274 0.554 0.548 0.541-0.536 0.229 0.340
t3 0.065 -0.024 -0.085 0.154 0.061 -0.021 -0.0p1 D.02 -0.269 0.077 0.044
Uz 0.042 -0.019 -0.057 0.111f 0.04 -0.014 -0.015 ©.01 -0.375 0.153 0.034

Table 3 - The correlation among the extracted camapts and the predictor variables
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The displacements and the fitting curves are giweRkigure 2, 5 and 8. The residuals are
plotted in Figure 3, 6 and 9. The decomposed §ttialues with respect to the aging variables
and the water level variables, respectively, asavdrin the Figure 4, 7 and 10.

In the example, all of the predictor variables m#udsr contributions to the interpretation of
the displacements in certain extent. The displacésnen three directions are positively
proportional to the water level. The aging variabhad relatively strong influence on tKe
component whilst the water level variables hadtigdasmall impacts on it. The effect on the
other two components from the water level appear®gically. The displacements ¥and

Z components became bigger with the time (the agimgables). These conclusions are
consistent with the deformation trends of an eesttkc dam. All of the regression residuals
are small and randomly equal to ZERO, which areadtarized by random errors.

The predictive ability of the models was proverbtlgh the random sampling from the raw
data points (Wang, 1999). First, 45 sample poindsewused to construct the models and 6
sample points left for the evaluation of the mogleddictive ability. The goodness of fit for
the models is:g, =0.998, J,=0.737, and g, =0.686 while the RMS errors for the 6

validation points werej, =0.621, g, =0.652, §, =0.852.

The stepwise regression was also performed fosdhee observation data and its results was
compared with the results of PLSR (Table 4).

Stepwise PLSR

X Modelling 0.8115 0.4793
Predictive 1.6068 0.7668

v Modelling 0.5871 0.5309
Predictive 1.0871 0.4336

7 Modelling 0.4778 0.4601
Predictive 1.1561 0.6972

Table 4 - Comparison between the stepwise regmessid PLSR
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Figure 2 - Displacement and the fitting curveXedirection
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Figure 8 - Displacement and the fitting curveZedirection
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Figure 10 - Decomposed fitting curvetlirection

4. CONCLUSIONS

The partial least squares regression has the laddiity to deal with the collinearity among
the predictor variables. It can take account irtoofthe observed predictor variables to
construct the models and maximize the correlatietwben the response variables and the
observed predictor variables. The PLSR can als@apgmied to the multivariate response
variables so the spatial deformation analysis besopossible. The given example shows that
the PLSR shows good potential for the processirgpai monitoring data in practice.
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