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SUMMARY  

 

Geomatics instruments frequently encounter continuous and barbarous use in highway 

construction sites. To measure with high precision, Electro-Optical Distance Measurement 

(EDM), inherent in Total Station instruments, have to fulfil certain requirements. Whether the 

EDM is old or new, its constant should be capable of automatically correcting the deviation 

between the mechanical and electrical centres when measuring distance. This calls for EDM 

calibration in order to control systematic errors in distance measurement. The least squares 

method minimizes the sum of squares of weighted disparities between observations to obtain 

a unique estimates from redundant measurements. As such, this method is applied in 

analyzing geomatics engineering data. In this contribution, the Lagrangian-based least squares 

criterion in Electro-Optical Distance Measurement (EDM) instrument calibration is assessed. 

Distance measurements by tape and EDM collected on a 440-meter (from 0+000.00 to 

0+0440.00 meters) stretch are used to evaluate the level of accuracy of Nikon Nivo Total 

Station. The Lagrangian approach is derived and implemented to compute the residual 

vectors, a posteriori variance factor and the correlation between the two sets of distance 

observations. In addition, the paper also establishes the total uncertainty of the measured 

distance using the distance precision provided in manufacturer’s literature for the EDM. 

Using the proposed approach, the study obtains substantial accuracy from the distances 

determined by the EDM. The achieved level of accuracy is also found to be within the 

acceptable tolerances for highway engineering projects in Malawi. As such, geomatics 

engineers may adopt the method in calibrating EDM instruments. 
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1  INTRODUCTION 

 

The advent of Electromagnetic Distance Measuring (EDM) geomatics equipment enables 

quick and accurate distance measurement regardless of terrain dynamics. At present, EDM 

devices are incorporated in Total Stations for making linear measurements. Total Stations 

have been used in both integrated surveys with Global Navigation Satellite System (GNSS) 

and in scenarios where GNSS is not the only approach to positioning. GNSS is a generic term 

referring to GPS (Global Positioning System); GLONASS (Global’naya Navigatsionnaya 

Sputnikkovaya Sistema); Galileo, and BeiDou. More details can be found in Suya (2019c) 

about GNSS and its application in geomatics engineering.   

 

Ghilani and Wolf (2012) highlighted GNSS as one of the methods for measuring distances 

alongside tapes and EDM instruments in geomatics engineering.  For instance, Suya (2019b) 

has recently demonstrated the value of the EDM in estimating the distances between electric 

poles in Malawi. 

 

EDM instruments are affected by five notable errors namely: zero errors, cyclic errors, scale 

error, phase measurement error, and external errors (Amiri-Simkooei, 2003). This calls for 

EDM calibration in order to determine the instrument errors which is eventually used to 

monitor its performance and reliability. As indicated by Schofield and Schofield and Breach  

(2007), calibration is one of way of controlling systematic errors in observations. To better 

improve distance measurement by EDM instruments, error corrections are necessary. For 

example, the application of atmospheric error corrections is pertinent when centimetre-level 

accuracy is required (Bertacchini et al., 2011). This is particularly true in deformation and 

displacement surveys. Ježko (2014) verified the efficacy of calibrating geomatics instruments 

including EDM equipment for improved deformation measurements.  

 

Both checking and calibration of geomatics instrument are useful to verify that the instrument 

is performing within allowable tolerances. The ambient atmospheric parameters such as 

pressure, humidity, temperature, and gradients influence distance measurement. For any 

EDM, the error affecting the final distance is a function of the equipment, operator (geomatics 

engineer) and the atmosphere. Staiger (2007) expressed the overall EDM error budget ( ) 

according to equation [1]: 

 

( )Atmosphere Operator, Equipment,f=                                      [1]  

When calibrating EDM instruments, the atmospheric parameters should be collected at each 

occupied station. When left uncorrected, Erenoglu (2012) noted that the variation in 
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atmospheric pressure and temperature affects the propagation of electromagnetic signal. An 

overview of the EDM calibration requirements is presented in Hazelton (2009).  

 

The accuracy of the measured distance by EDM is preferably performed on a certified 

baseline (Zakari and Aliyu, 2014). Both conventional and satellite-based positioning methods 

have been used in calibrating EDM parameters. İnal, Şanhoğlu, and Yiğit (2008) employed 

GNSS survey to estimate EDM scale errors for different geomatics instruments including 

Topcon GTS701, Topcon GTS 229, Sokkisha SET2, and Sokkia Power SET 2000. Khalil 

(2005) implemented mirrors on a SOKKIA Total Station SET 600 to determine the EDM zero 

error. On the other hand, Esteban et al. (2015) combined GNSS (Topcon Hiper Lite +, Leica 

SR500 and Ashtech Z-Xtreme) and EDM (Leica TC-407, Pentax R-326EX and Topcon GTS-

236W) to calibrate a 125-meter baseline.  

 

The Least Squares Estimation (LSE) play a worthwhile role in determining EDM calibration 

parameters. Amiri-Simkooei (2003) deduced a more comprehensive least squares approach 

for computing EDM zero error.  Recently, Erenoglu (2018) compared a total of five robust 

methods to conventional least squares to identify the best approach for estimating EDM zero 

errors. Parametric least squares have been implemented in software to detect EDM instrument 

constant, reflector constant, and scale factor. An example of such software is EDMCAL 

(EDM CALibration) developed and maintained by the University of New South Wales 

(UNSW, Janssen and Watson, 2014).  

 

Whether the EDM is old or new, its constant should automatically correct for the shift 

between electrical and mechanical centres when measuring distance. For calibration purposes, 

distances measured by EDM are compared to a correctly established pillared baseline. In 

absence of a baseline, Uren and Price (1985) recommended the use of a three-peg-test to 

check the EDM zero error. 

 

Determination of zero error is done by distance measurement. The overall magnitude of the 

residual vectors in distance measurement are performed by the least squares criterion. 

Schofield and Breach (2007) presented the application of least squares on the checking of 

instrument constant.  Suya (2019a) unveiled the contribution of the least squares approach to 

the discipline of engineering surveying in Malawi. Wang, Li, and Liu (2016) compared the 

robust total least squares and general least squares and its application in geodetic science. 

Nielsen (1998) calibrated nonlinear weighting transducer using Lagrange multipliers. The 

application of method of Lagrange has not received due attention in EDM instrument 

calibration in Malawi. 

 

In this contribution, the application of the Lagrangian least squares approach in 

Electromagnetic Distance Measuring (EDM) instrument calibration is evaluated. The study 

specifically determines the residual vectors, a posteriori variance factor and the correlation 

between the two sets of distance observations to establish the threshold of accuracy. 

 

Lagrangian-Based Least Squares Criterion in Electro-Optical Distance Measurement (EDM) Instrument Calibration

(10325)

Robert Suya (Malawi)

FIG Working Week 2020

Smart surveyors for land and water management

Amsterdam, the Netherlands, 10–14 May 2020



 

2 TRADITIONAL GEOMATICS TECHNIQUES 

Traditional geomatics engineering approaches such as traversing, trilateration and 

triangulation are used for establishing two-dimensional (2D), horizontal angles and horizontal 

distances. The relationships expressed by these observations are non-linear. The expressions 

are in explicit mathematical form and are linearized by Taylor series expansion, usually up to 

first order. The linearized models are input in the derivation of variation function in least 

squares method. The least squares approach is presented in most geomatics engineering 

textbooks such as in Ghilani and Wolf (2006) and in Schofield and Breach  (2007). The least 

squares approach is further expressed by incorporating a vector of correlates (also known as 

Lagrangian multipliers) to show how the variables change with respect to each other.   

 

2.1 Lagrangian Least Squares Criterion 

 

The Lagrangian approach of the least squares criterion is more conveniently applied in 

handling linearized models in geomatics engineering. The Lagrangian multipliers have been 

used to make the weighted total least-squares (WTLS) more rigorous in linear regression and 

coordinate transformation. A concise description about the Lagrangian approach can be 

obtained from Gong and Li (2017). In simple terms, the Lagrangian approach is expressed by 

computing the partial derivatives of the variation function ( ) with respect to the residual 

error ( v ), systematic or constant error ( ) and Lagrangian multipliers ( k ) as presented in [2]: 
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
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In Equation [2], T denotes transpose; 
1−

C  denotes the inverse of the covariance matrix of 

observations (  ); A  denotes the observation equation coefficient matrix ( )xf  / ; w  denotes 

vector of misclosure (   −= 0xfw ), and v  denotes the vector of observation residuals 

( Awv += ).  

 

The equations in [2] can be simplified to the least squares normal equations based on the 

Lagrangian approach according to [3]: 

 

01 =+− T

l

T kCv                                [3]  

0=AkT
                                [4]  

0=−+ vwA                                [5] 
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To obtain the least squares solution, simultaneously solve for  from the Lagrangian normal 

equations in [3] to [5]. By post-multiplying 01 =+− TT kCV   by the matrix of 

observations A and substituting AkT , Equation [6] is obtained. 

 

01 =+− ACvT

           [6] 

 

Transpose Equation [6] to obtain [7]: 

 

 

01 =+− vCAT

                                                    [7]   

 

Substitute v , from Equation [5], into Equation [7] to obtain the normal equation based on 

Lagrangian criterion expressed in [8]: 

 

011 =+ −− wCAACA TT

                                                     [8] 

       

Solve for   to obtain the solution for Equation [8] as expressed in Equation [9]: 

( ) wCAACA TT 111 −−−−=                                                     [9]  

 

2.2 Parameters and Observations   

  

The precision of the adjusted quantities such as parameters and observations is given by 

Equations [10] and [11]:  

 

+= 0ˆ xx                 [10]  

v+= ̂                [11]  

 

In equations [10] and [11], x̂  and ̂ are the vector of adjusted parameters and vector of 

adjusted observations, respectively.  

 

 

2.3 Precision in Geomatics Engineering 

 

Adjustment is meaningful when observations are redundant (Mikhail, 1976). Redundancy is 

described as the number of degrees of freedom, for example in Ghilani and Wolf (2012). It 

simply means the number of independent observations made minus the number of unknown 

parameters involved in the equations.  
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For both weighted and unweighted adjustments, the a posteriori variance factor of unit weight 

is expressed as [12]: 

 

r

vCv
s

T 1
2

0

−

=            [12]  

 

where r is the number of observations minus the number of parameters.  

 

For the unweighted case, it is just a matter of removing 
1−

C from Equation [12]. The product 

of the standard deviation of unit weight 
2

0s and ACAT 1−

 leads to the covariance matrix of 

parameters [13]. 

 

( )ACAsC T

x

12

0ˆ

−=                                         [13]  

 

     

3 MATERIALS AND METHODS 

 

3.1 Geomatics Instruments Experimented 

 

In this study, two sets of distance observations were made using two different instruments on 

Lilongwe Western Bypass Road. In the first set, design distances were set out on the road 

using a measuring tape in a joint construction survey between the client and contractor survey 

teams. In the second set, the same distances were measured with a newly bought Nikon Nivo 

Total Station by the same teams.   

  

The distance was measured at twenty-meter interval from 0+000.00 to 0+440.00 meters. The 

distances measured with a tape were taken as control and accepted by the consultants as per 

the design.  For each section, the distance was measured five-times within four days and an 

average was taken for each. Five redundant observations for each section were recorded with 

the Total Station (TS). Similarly, an average was taken for each section.  

The control and experimental distances together with the approved TS standard deviations of 

the measurements are presented in Table 1. 

 

Lagrangian-Based Least Squares Criterion in Electro-Optical Distance Measurement (EDM) Instrument Calibration

(10325)

Robert Suya (Malawi)

FIG Working Week 2020

Smart surveyors for land and water management

Amsterdam, the Netherlands, 10–14 May 2020



 

Table 1: Tape and Total Station distances (Source: David Consultants). 

SN.: From To Tape Total Station Standard Deviation

1 0+000 0+020 19.999 19.9999 0.0020

2 0+020 0+040 19.997 19.9999 0.0025

3 0+040 0+060 19.997 20.0000 0.0030

4 0+060 0+080 19.999 19.9999 0.0010

5 0+080 0+100 20.000 20.0009 0.0005

6 0+100 0+120 19.999 19.9999 0.0002

7 0+120 0+140 19.999 19.9999 0.0001

8 0+140 0+160 19.999 20.0000 0.0002

9 0+160 0+180 19.998 19.9999 0.0010

10 0+180 0+200 19.999 19.9999 0.0003

11 0+200 0+220 19.999 19.9999 0.0003

12 0+220 0+240 19.997 19.9999 0.0020

13 0+240 0+260 19.999 19.9999 0.0005

14 0+260 0+280 20.001 20.0010 0.0004

15 0+280 0+300 19.999 19.9999 0.0007

16 0+300 0+320 19.999 19.9999 0.0008

17 0+320 0+340 19.998 19.9999 0.0009

18 0+340 0+360 19.998 19.9999 0.0011

19 0+360 0+380 19.999 20.0002 0.0012

20 0+380 0+400 19.998 19.9994 0.0013

21 0+400 0+420 19.998 19.9998 0.0014

22 0+420 0+440 19.998 19.9999 0.0015

Chainages

Key: The distances measured with a tape and Total Station fall in the 

columns of 'Tape' and'Total Station', respectively.
 

 

The distances determined from the TS were taken as experimental part in order to check the 

level of agreement between the two sets of distances. This was done to assess the precision of 

the new TS against the manufacturer’s specification.  

 

 

3.2 Total Station Specifications 

The TS distance specifications are presented in Table 2. The measurements mode for the 

employed TS are described in the key. Using the descriptions provided for distance 

measurement with or without a reflector, the uncertainty of the TS was estimated for the given 

distance.  
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Table 2: Distance precision for Nikon Nivo 3.C 

Distance Precision

Precise Mode

Prism/Reflectorless ± (3 + 2 ppm × D) mm (–10 °C to +40 °C)

± (3 + 3 ppm × D) mm

   (–20 °C to –10 °C, +40 °C to +50 °C)

Normal Mode

Prism Prism ± (10 + 5 ppm × D) mm

Reflectorless Reflectorless ± (10 + 5 ppm × D) mm

Key: In precise mode with the prism and without (reflectorless), 

        the Total Station takes 1.5 seconds and 1.8 seconds to 

        compute distance, respectively. In normal mode, 0.8 

        seconds and 1.0 second to measure, respectively.

1

2

 
 

 

3.3 Uncertainty in Measured Distance 

 

Uncertainty in the measured distance with the TS was determined using the distance 

precision. In Table 2, distance precision is presented in manufacturer’s literature as (3 + 2 

ppm x D) mm and (10 + 5 ppm x D) in precise and normal mode, respectively.  

 

For this TS, 3 and 10 denote the zero error and phase measurement whereas 2 ppm and 5 ppm 

are the resultant errors in the modulation frequency and in the group refractive index. The two 

values (2 ppm and 5 ppm) are proportional to the distance (D) measured. The abbreviation 

ppm denotes parts per million in which 1 ppm equates to 1 mm per km. More details EDM 

precision are discussed in Ghilani and Wolf (2012). 

 

The total uncertainty was estimated for the twenty (20)-meter distance using Equation [14] as 

given in Schofield and Breach  (2007): 

 

( )  mma 2

1
26-2 bL.10+=                                                      [14] 

 

where L denotes the distance in kilometres. 

   

This was done to check the threshold of the measured distance on the ground using the TS. 
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3.4 Design Matrix Formulation 

 

The Lagrangian approach, Equation [9], was employed in order to compute the least squares 

solution. A design matrix involving twenty-two (22) tape observations ( TapeA ) was developed. 

This is simply a 2 by 22 matrix, i.e., 2

22 TapeA  as summarised in Equation [15]:  

 

 


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TapeA                                  [15] 

 

3.5  Vector of Misclosure 

 

The misclosure vector was determined by simply subtracting the TS distance measurements 

from the control observations. This was computed using w  as described in Section 1.2 above. 

This is simply a one by 22 matrix (
1

22 w ), as summarised in Equation [16]: 
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         [16] 

 

 

3.6 Covariance Matrix of Observations 

Using the standard deviations for the TS observations, the covariance matrix was formulated. 

A weight matrix of measurements with squares of the inverses of the standard deviations was 

developed. Since there were twenty-two observations, then a 22 by 22 diagonal matrix was 

developed 
22

22 C as presented in Equation [17].  
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3.7 Least Squares Solution 

 

The least squares solution was obtained using equation [9], i.e.: ( ) .111 wCAACA TT −−−−=   

equations [15], [16] and [17] were plugged in equation [9] to obtain the least squares solution. 

The vector of residuals was determined using Awv += . This was done by simply summing 

up the vector of misclosure and the product of the design matrix and the least squares 

solution. This was performed to quantify the degree of disparity between the standard and 

experimental distances.   

 

A posteriori variance (
2

0s ) of factor of unit weight was computed to express the precision as 

discussed in section 2.3.  Since there were twenty-two observations, then the degrees of 

freedom ( r ) was twenty (i.e., 22 observations minus two unknowns). The vector of residuals, 

covariance matrix, and the degrees of freedom were used to calculate 
2

0s . The covariance 

matrix was computed to determine whether the two sets of measurements were correlated or 

not. This was deduced from Equation [13], presented in section 2.3. 

 

4 RESULTS AND DISCUSSIONS 

Processing the experimental datasets using the approach discussed in the methodology, the 

findings to the Lagrangian-based least squares criterion EDM calibration are presented in the 

following sub-sections. 

 

4.1 Output on Vector of Residuals 

In consideration to section 3.7, the computed vector of residuals is presented Equation [18]: 
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                                                                            [18] 

The disparity between the Tape and TS distance measurements was satisfying. As can be seen 

in Equation [18], all the residuals were very small (millimeter-level). The differences in 

distances agree to within a few millimetres. 

 

4.2 A posteriori Variance Factor 

The residual values, the covariance matrix, and the degrees of freedom were plugged in 

Equation [12] to obtain the a posteriori variance factor.  The solution is presented in Equation 

[19]: 

 

 0.1283 
1

2

0 ==
−

r

vCv
s

T

                                  [19] 
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4.3 Correlation Between Observations 

The covariance matrix was computed according to Equation [13]. The calculated correlation 

between the Tape and TS distance measurements are presented in Equation [20]: 

 

      ( ) 







== −

0.00370.0731-

0.0731-1.4621
12

0ˆ ACAsC T

x                                            [20] 

As can be seen from Equation [19], the off-diagonal elements are equal to -0.073 m. This 

means that the calculated values for the tape and EDM were correlated. The diagonal values 

are the associated variances. The standard deviations of the tape and EDM observations are 

simply the square-roots of the diagonal elements of the matrix in Equation [20]. This follows 

that the tape and EDM measurements were determined with standard errors of 1.209 m and 

0.061 m, respectively. This follows that the EDM measurements were about twenty-times 

better than those of the tape. The accuracy (about 6 cm) of the measured distances by EDM 

was within acceptable tolerance in highway engineering surveys in Malawi as highlighted by 

Suya (2019a). 

 

4.4 Instrument Uncertainty 

The TS uncertainty was determined using equation [14] presented in section 3.3. For the 

precise and normal mode, the estimated uncertainty for the 20-meter distance was about 3 mm 

and 10 mm, respectively.  This means better precision can be obtained when this TS is used in 

precise mode. 

 

5 CONCLUSIONS 

In this paper, the Lagrangian-based least squares criterion in Electro-Optical Distance 

Measurement (EDM) instrument calibration was evaluated. Distance measurements by tape 

and EDM collected on a 440-meter stretch were used to assess the level of accuracy of Nikon 

Nivo TS. The Lagrangian approach was derived and implemented to compute the residual 

vectors, a posteriori variance factor and the correlation between the two sets of distance 

observations. The uncertainty of the measured distance was estimated using the provided 

distance precision for the EDM.  

 

Using the proposed approach, substantial accuracy was obtained from the distances 

determined by the EDM. The level of accuracy estimated was also within the acceptable 

tolerances in highway engineering surveys in Malawi. As such, geomatics engineers need to 

be adopting the method in calibrating EDM instruments in Malawi. 
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The implemented datasets were not determined from a pillared baseline. Moreover, the tape 

used in distance measurement may have errors due to lack of standardization. Therefore, a 

similar study has to be performed taking these factors into consideration. 
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