Tidal Harmonic Analysis at Bonga Field

Olusegun BADEJO, Peter EVARIE, Nkem ANORUE and Sunday ALADEMOMI, Nigeria

Key words: Tide, Harmonic Analysis, Bonga Field

SUMMARY

Traditionally, water level observations are carried out with the aid of tide gauges at areas close to shoreline in Nigeria. However with oil exploration and prospecting activities being moved from swamp and shallow locations to deep offshore locations in Nigeria, there is a need to deploy appropriate tide measuring equipment deep offshore and also study the nature and effect of tides in deep offshore marine environment.

In this paper, 50 days water level data derived from pressure data recorded by AANDERAA Water Level Recorder WLR 7 at an average depth of 1,000m at Bonga field was used to do a well detailed tidal harmonic analysis.

In the analysis, the minimum water depth was set as the chart datum and water level above this datum was regarded as tidal data. Eighteen tidal constituents were used for the harmonic analysis. Astronomical arguments (V+U) and the nodal factor (f) were computed for the middle of the observation period with a programme written in Matlab environment.

The harmonic constants such as the amplitudes and the phase lags for each of the constituents were determined and prediction starting from the initial time of observation in 2008 to December 2013 was made at 10 minutes intervals.

Statistical analysis of the predicted tides with validation data was made and the maximum deviation of the predicted tides from the validation data was 0.08m. The accuracy of the harmonic analysis and prediction is high despite the fact that only 50 days data was used for the analysis.

Tidal data covering a period of at least one year should be collected at deep offshore locations. These tidal data should be analysed using harmonic analysis. The results of the analyses should be used to support deep marine operations in the country.

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

Tidal Harmonic Analysis at Bonga Field

Olusegun BADEJO, Peter EVARIE, Nkem ANORUE and Sunday ALADEMOMI, Nigeria

1. INTRODUCTION

Tides are periodic variations in the water level. They occur as a result of gravitational attraction of the moon and sun on the earth's water bodies.

Traditionally, water level observations are carried out with the aid of tide gauges at areas close to shoreline in Nigeria. However with oil exploration and prospecting activities being moved from swamp and shallow locations to deep offshore locations in Nigeria, there is a need to deploy appropriate tide measuring equipment deep offshore and study the nature and effect of tides in deep offshore marine environment.

1.1 Water Level Recorder WLR 7

The Water Level Recorder is specially designed to measure ocean water levels. Placed on the seabed, the instrument records pressure, temperature and conductivity at regular intervals. The data is stored in a removable and reusable solid-state Data Storage Unit (DSU) 2990. Five channels of 10 bits each are recorded in sequence. The channels are:

i. Reference
ii. Temperature
iii. Pressure, most significant
iv. Pressure, least significant
v. Conductivity (optional)

The reference is a fixed reading that serves to indicate correct performance of the instrument and to identify data series from individual instruments. The temperature is measured by a thermistor fitted into a stud extending into the water. The pressure sensor is based on a pressure controlled quartz crystal oscillator. The measurement is a 20-bit word, but is divided into two 10-bit words recorded in two successive channels. Conductivity is measured by an electrodeless induction-type sensor. When the conductivity sensor is not installed the instrument will record a fixed value in channel 5. Figure 1.1 shows the Water Level Recorder WLR 7 used for this study.

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

Figure 1.1: Water Level Recorder WLR 7

1.2 Study Area

The Bonga Field is an oilfield in Nigeria. It is located in Oil Mining Lease (OML) 118. The lease covers an area of approximately 1167 km². The average water depth of Bonga field is 1,000 metres. The field was discovered in 1996, with government approval for its development given in 2002. The field began its first production in November 2005. The field produces both crude oil and natural gas through a floating production, storage and off-take (FPSO) vessel. The crude oil is offloaded to tankers through a single point mooring (SPM) buoy while the gas is exported through a series of pipelines to Bonny NLNG plant. The field is operated by Shell Nigeria and owned by Shell Nigeria (55%), Exxon (20%), Nigerian AGIP (12.5%) and Elf Petroleum (12.5%).

2. METHODOLOGY

This study is focused on tidal prediction to support deep water projects in Bonga field, offshore Nigeria. The techniques employed for this study include water level observation with Water Level Recorder WLR 7, tidal data extraction from records of the water level recorder, tidal harmonic analysis and prediction. This chapter describes the methodology and the steps taken in achieving the desired results.

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

2.1 Data Acquisition

A Water Level Recorder WLR 7 was used for data acquisition. The Water Level Recorder WLR7 is a high precision recording instrument for determining water level in the open sea. The water level is determined by measuring the hydrostatic pressure with an ultra-precise quartz pressure sensor. Knowing the density of water and atmospheric pressure, the water level can then be found. The operation depth is limited by the range of the pressure transducer. The mechanical parts of this equipment are strengthened to withstand a pressure down to 6000 meter depth.

A fifty day data water level data recorded by Water Level Recorder WLR 7 was provided by the Geomatics Department of the Shell Nigeria Exploration and Production Company (SNEPCo). The water level data were taken at ten minutes intervals between September 11th 2010 to November 1st, 2010. A total of 8987 datasets were acquired within this period. The 10 minute interval data was converted to a 1224 hourly data. These hourly readings were then converted to depth data using equation 2.1.

Depth (m) = $0.001*(P_{wd} - P_{atmos})/d*g$

2.1

Where

$P_{wd} =$	Pressure at water depth (Pa)
$P_{atmos} =$	Atmospheric Pressure (Pa)
	Atmospheric pressure of Bonga = 101000 (Pascal)
d =	Density of water at the actual location
	Density used for Bonga = $1.03017 (Kg/m^3)$
g =	Gravity of the earth (9.78334 m/s^2)

The minimum water depth was set as the chart datum and water level above this datum was regarded as tidal data.

Prior to the process of harmonic analysis of the tidal data, the observed tidal data was passed through a median filter to filter off spikes in the data. The main idea of the median filter is to run through the signal entry by entry, replacing each entry with the median of neighboring entries (www/en.wikipedia.org/wiki/Median_filter, 2012).

2.2 Harmonic Analysis of Tides

The basic equation for tide modeling is given by Doodson and Warburg (1941) as:

$$h(t) = S_{o+} \sum_{i=1}^{n} H_i \cos (\omega_i t + \alpha_i)$$

Where;

2.2

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

 ω_i = Tidal constituent frequency

 H_i = Amplitude of tidal constituent i

 A_i = Initial phase of the constituent

 S_o = Height of mean water level above the datum used

t = Time

n = number of harmonic constituents

As a result of a slow rotation of the orbit of the moon with a period of about 18.61 years, the magnitude, H, and phase, α , of each harmonic constituent vary slowly on either side of the values they would have assuming the moon's orbit were constant. To account for this variation a nodal factor f and astronomical argument (v + u) are usually introduced to modify equation 2.2 (Eluwa, 1991).

h (t) =
$$S_0 + \sum_{i=1}^{n} f_i H_i \cos(\omega_i t + (v_i + u_i) - \alpha_i)$$
 2.3

where

n = Number of harmonic constituents

v = Phase angle at time zero

u = Nodal angle

f = Nodal factor

 $\omega =$ Constituent speed

Eighteen tidal constituents shown in table 2.1 were used for the harmonic analysis.

S/N	Constituent	Constituent Speed
	Name	(w _i)
1.	M2	28.9841042
2.	S2	30.0000000
3.	N2	28.4397295
4.	K2	30.0821373
5.	K1	15.0410686
6.	01	13.9430356
7.	P1	14.9589314
8.	MSf	1.0158958
9.	2N2	27.8953548
10.	MO3	42.9271400
11.	MK3	44.0251729
12.	MN4	57.4238337
13.	M4	57.9682084
14.	SN4	58.4397300
15.	MS4	58.9841042
16.	2MN6	88.4079380
17.	M6	86.9523127
18.	2MS6	87.9682080

Table 2.1: Tidal Constituents used for Harmonic Analysis

Formulae for the computation of V and U are given in tables 2.2 and 2.3 according to Schureman (1958), with some minor changes due to the direct use of the original astronomical

parameters (Stravisi, 1983).

Table 2.2 summarizes the fundamental astronomical parameters. The time dependent auxiliary coefficients (c) are introduced for their recurrent use. Their numerical values at the beginning of 1985 are given, together with the annual variations taken between 1980 and 1990; final values can be rounded to six decimal digits. The longitudes of lunar and solar elements (d) define the long period time dependence of the constituent arguments V; they are expressed as a function of

$$T = {365 n + int ((n - 1)/4) + 1/2} / 36525 2.4$$

Where T is time expressed in Julian centuries (36 525 d), reckoned from Greenwich mean noon, December 31, 1899 (Gregorian calendar); m is time after 0 h, January 1, 1900 in years and the integer part of (n - 1)/4 accounts for the leap years. The time dependent elements of the moon's orbit (e) define, according to Schureman (1958), f and u.

Astronomical arguments (V+U) and the nodal factor (f) were computed for seven constituents at the middle of the observation period in matlab environment using equations in tables 2.2 and 2.3.

Table 2.2: Astronomical Parameters of Use in	i Tidal Computations
--	-----------------------------

a)	Constants		
~	$c = 3.844.03 \times 10^8 m_{\odot}$	mean earth-moon distance	
	$c_1 = 1.495\ 042\ 01 \times 10^{11}\ m$	mean earth-sun distance	
	$S/E = 332488 \pm 43$	sun/earth mass ratio	
	$M/E = 12\ 289 \pm 4 \times 10^{-6} = 1\ /\ 81.37$	moon/earth mass ratio	
	$S/M = 2.705 455 \times 10^7$	sun/moon mass ratio	
	$S' = (c/c_1)^3 S/M = 0.459 875 64$	solar factor	
	e = 0.05490056	eccentricity of moon's orbit	
	$i = 5.14537628^{\circ}$	inclination of moon's orbit to plan	e of ecliptic
b)	Time dependent parameters		
	n	time after 1900, in years	
	$\begin{array}{l} e_1 &= 0.016\ 751\ 04 - 4.180 \times 10^{-7}\ n - 1.26 \times 10^{-11}\ n^2 \\ \omega &= 23.452\ 294^\circ - 1.301\ 11^\circ \times 10^{-4}\ n \end{array}$	eccentricity of earth's orbit obliquity of the ecliptic	
c)	Time dependent auxiliary coefficients		
	A = S' $(1 + 3/2 e_1^2) / (1 + 3/2 e^2)$	Numerical value, 1985	Increment, per year
	$A_1 = \cos i \cos \omega$	0.913 771 493	+ 0.000 000 900
	$A_2 = \sin i \sin \omega$	0.035 676 679	- 0.000 000 187
	$A_3 = \cos \frac{1}{2} (\omega - i) / \cos \frac{1}{2} (\omega + i)$	1.018 819 128	- 0.000 000 108
	$A_4 = \sin \frac{1}{2} (\omega - i) / \sin \frac{1}{2} (\omega + i)$	0.643 957 699	$-0.000\ 001\ 671$
	$\begin{array}{rcl} A_5 &= A \sin 2 \ \omega \\ A_6 &= A \sin^2 \omega \end{array}$	0.334 316 893	- 0.000 001 429
		0.072 478 792	- 0.000 000 761
	$B_1 = \{\cos\frac{\omega}{2} \cos\frac{i}{2}\}^{-4}$	1.092 333 626	- 0.000 001 029
	$B_2 = \{A_5 + (1 - 3/2 \sin^2 i) \sin 2 \omega\}^{-2}$ $B_3 = \{A_6 + (1 - 3/2 \sin^2 i) \sin^2 \omega\}^{-2}$	0.897 663 509	+0.00007647
		19.098 898 614	+ 0.000 400 363
	$B_4 = \{\sin \omega \cos^2 \frac{\omega}{2} \cos^4 \frac{i}{2}\}^{-1}$	2.632 568 903	+ 0.000 012 547
	$B_r = 2 A_r B_r$	0.600 208 150	$+0.000\ 002\ 548$
	$B_6^3 = 2 A_6 B_3^2$	2.768 530 194	+ 0.000 028 978
	$B_7^0 = \{1 + (1^3 - 3/2 \sin^2 i) / A\}^{-2} = B_2 A_5^2 = B_3 A_6^2$	0.100 329 862	- 0.000 000 003
	Longitude of lunar and solar elements (3) T time in Julian centuries (36 525 d), r h = 279.696 678° + 36 000.768 925° T + 3.025° × 10 ⁻¹	reckoned from Greenwich mean noon, Decem	ber 31, 1899 mean longitude of sun
	$s = 270.437 422^{\circ} + 481 267.892 000^{\circ} T + 2.525^{\circ} \times 10^{-3}$	$3 \tilde{T}^2 + 1.89^{\circ} \times 10^{-6} T^3$	mean longitude of moon
	$p = 334.328\ 019^\circ + 4\ 069.032\ 206^\circ\ T - 1.034\ 4^\circ \times 10^{-2}$	$T^2 - 1.25^{\circ} \times 10^{-5} T^3$	longitude of lunar perigee
	$ \begin{array}{l} \mathbf{a} & = 279.696\ 678^\circ + \ 36\ 000.768\ 925^\circ \ + \ 30.00^\circ 58\ \times \ 10^{-1} \\ \mathbf{s} & = 270.437\ 422^\circ + 481\ 267.892\ 000^\circ \ \mathrm{T} + \ 3.255^\circ \ \times \ 10^{-1} \\ \mathbf{p} & = 334.328\ 019^\circ + \ 4\ 069.032\ 206^\circ \ \mathbf{T} - \ 1.034\ ^4 \ \times \ 10^{-2} \\ \mathbf{N} & = 259.182\ 533^\circ - \ 1\ 934.142\ 397^\circ \ \mathrm{T} + \ 2.106^\circ \ \times \ 10^{-1} \\ \end{array} $	3 T ² + 2.22° × 10 ⁻⁶ T ³	longitude of moon's node
	Time dependent elements of the lunar orbit (3)		
	I = arc cos $\{A_1 - A_2 \cos N\}$	obliquity of lunar orbit with respe	ct to earth's equator
	$C = \arctan \left\{ A_3 \tan N/2 \right\}$		
	$v = C - \arctan \{A_4 \tan N/2\}$ $v' = \arctan \{(\sin 21 \sin y) / (A_5 + \sin 21 \cos y)\}$	right ascension of lunar intersectio	n
	$ \begin{array}{l} \nu' &= \arctan \left\{ (\sin 2I \sin \nu) / (A_5 + \sin 2I \cos \nu) \right\} \\ 2 \nu'' &= \arctan \left\{ (\sin^2 I \sin 2 \nu) / (A_6 + \sin^2 I \cos 2 \nu) \right\} \end{array} $	auxiliary term for K ₁ auxiliary term for K ₂	
	$\xi = N + v - 2C$	longitude in moon's orbit of lunar	intersection
2)	- American Ephemeris and Nautical Almanac Smithsonian Physical Tables		
3)	Schureman (1958)		

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6 - 10 May 2013

Culled from Stravisi, 1983

_		V (t) (1)		σ(2)
-	1	V (I) (I)	u	0 (2)
M ₂	$B_1 \cos^4 \frac{I}{2}$	$2\tau - 2s + 2h$	$2 \xi - 2 \nu$	$28.984\ 104\ 214 - 10.14 \times 10^{-9}\ T = 28.984\ 104\ 205$
S ₂	1	27 0	0	30
N ₂	$B_1 \cos^4 \frac{I}{2}$	$2\tau - 3s + 2h + p$	$2\xi - 2\nu$	$28.439\ 729\ 516 - 28.16 \times 10^{-9}\ T = 28.439\ 729\ 492$
K ₂	$\{B_3 \sin^4 I + B_6 \sin^2 I \cos 2\nu + B_7\}^{1/2}$	2τ + 2h	-2ν "	$30.082\ 137\ 278 + \ 1.38 \times 10^{-9}\ T = 30.082\ 137\ 279$
К1	$(B_2 \sin^2 2 I + B_5 \sin 2 I \cos \nu + B_7)^{1/2}$	τ + h - 90°	- ν'	$15.041\ 068\ 639 + \ 0.69 \times 10^{-9}\ T = 15.041\ 068\ 640$
01	$B_4 \sin I \cos^2 \frac{I}{2}$	$\tau = 2 s + h + 90^{\circ}$	$2\xi - v$	$13.943\ 035\ 575 - 10.84 \times 10^{-9}\ T = 13.943\ 035\ 566$
P ₁	1 2	$\tau - h + 90^{\circ}$	0	14.958 931 361 - 0.69×10^{-9} T = 14.958 931 360

Table 2.3: Time Dependent Nodal Factors, Arguments and Speeds of Seven Major

(2) Angular speed in °/h; terms in T², computed for Constant speeds refer to T = 0.85, year 1985.

Cı

The Nodal factors f and astronomical arguments V and U for the remaining 11 tidal constituents were derived from the nodal factors and astronomical arguments V and U of the seven constituents given in table 2.3. Table 2.4 shows the relationships between the various nodal factors and astronomical arguments.

Table 2.4: Relationshi	ns Retween Va	arious Nodal Factors	And Astronom	ical Arguments
1 abic 2.7. Kelauolisin	b Detween va	arious riouar raciors	And Astronom	ical Alguments

S/N			Nodal Factor	Astronomical
	Constituent Name	Constituent Speed (ω _i)	(f _i)	Argument (V _i +U _i)
1.	MSf	1.0158958	f of M ₂	360-(v+u) of M ₂
2.	2N2	27.8953548	f of M ₂	2x(v+u) of N ₂ - (v+u) of M ₂
3.	MO3	42.9271400	$(f \text{ of } M_2)x(f \text{ of } O_1)$	$(v+u)$ of M_2+ $(v+u)$ of O_1
4.	MK3	44.0251729	$(f \text{ of } M_2)x(f \text{ of } K_1)$	$(v+u)$ of M_2+ $(v+u)$ of K_1
5.	MN4	57.4238337	(f of M ₂) Squared	$(v+u)$ of M_2+ $(v+u)$ of N_2
6.	M4	57.9682084	(f of M ₂) Squared	2x(v+u) of M ₂
7.	SN4	58.4397300	f of M ₂	(v+u) of N ₂
8.	MS4	58.9841042	f of M ₂	(v+u) of M ₂
9.	2MN6	88.4079380	(f of M ₂) Cubed	2x(v+u) of M ₂ + (v+u) of N ₂
10.	M6	86.9523127	(f of M ₂) Cubed	3x(v+u) of M ₂
11.	2MS6	87.9682080	(f of M ₂) Squared	2x(v+u) of M ₂

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6 - 10 May 2013 The tidal harmonic and prediction model in equation 2.3 can be expanded using the trigonometric identity as:

$$\begin{split} & h\left(t\right) = S_0 + \sum_{i=1}^{n} f_i H_i \cos\left(\omega_i t + (V_i + U_i)\right) \cos X_i + \sum_{i=1}^{n} f_i H_i \sin\left(\omega_i t + (V_0 + U_i)\right) \sin X_i \\ & \text{Let } A_i = H_i \cos X_i \\ & \text{and} \\ & B_i = H_i \sin X_i \\ & \text{The tidal harmonic and prediction model becomes:} \\ & h\left(t\right) = S_0 + \sum_{i=1}^{n} \left(A_i f_i \cos\left(\omega_i t + (V_i + U_i)\right) + B_i f_i \sin\left(\omega_i t + (V_i + U_i)\right) \right) \\ & 2.6 \end{split}$$

Vandermonde Matrix will therefore be created in the following form:

$$\begin{split} & S_{0} \quad \begin{array}{c} A_{1} \quad B_{1} \quad A_{2} \quad B_{2} \ldots \\ & I_{1} \quad Cos \left(\omega_{1}t_{1} + (V_{1} + U_{1}) \right) \quad f_{1} Sin \left(\omega_{1}t_{1} + (V_{1} + U_{1}) \right) \quad f_{2} Cos \left(\omega_{2}t_{1} + (V_{2} + U_{2}) \right) \quad f_{2} Sin \left(\omega_{2}t_{1} + (V_{2} + U_{2}) \right) \ldots \\ & I_{1} \quad f_{1} Cos \left(\omega_{1}t_{2} + (V_{1} + U_{1}) \right) \quad f_{1} Sin \left(\omega_{1}t_{2} + (V_{1} + U_{1}) \right) \quad f_{2} Cos \left(\omega_{2}t_{2} + (V_{2} + U_{2}) \right) \quad f_{2} Sin \left(\omega_{2}t_{2} + (V_{2} + U_{2}) \right) \ldots \\ & \vdots \\ & \vdots \\ & I_{1} \quad f_{1} Cos \left(\omega_{1}t_{n} + (V_{1} + U_{1}) \right) \quad f_{1} Sin \left(\omega_{1}t_{n} + (V_{1} + U_{1}) \right) \quad f_{2} Cos \left(\omega_{2}t_{n} + (V_{2} + U_{2}) \right) \quad f_{2} Sin \left(\omega_{2}t_{n} + (V_{2} + U_{2}) \right) \ldots \\ & \ldots \\ & \ldots \\ & 2.7 \end{split}$$

A total or sum of thirty seven constants ((2*18) + 1) would be determined for the trigonometric polynomial.

A total of 1200 hourly data (50 days data) were used for the adjustment. 1200 tidal observations form the vector of observations. The Vandermonde designed matrix A (1200 x 37) is then formed.

Least squares method was used to solve the unknown parameters. The least squares solution is given as:

$\mathbf{X} = (\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{L}$	2.8
$X = N^{-1}U$	
Where $N = (A^T P A)$	
$\mathbf{U} = \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{L}$	
$X = [S_0, A_1, B_1, \dots, A_n, B_n]^T$	2.9
$L = [h(t_1), h(t_2) \dots h(t_n)]^T$	2.10

Where A is called the Vandermonde design matrix,

The normal equation N is near singular and thus the unknown parameters X were determined by using the conjudate gradient method. This method was discussed extensively in Badejo *et al* (2012).

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

With the values of the unknown parameters in equation 2.9 computed, and the values of f_i and $(v_i + u_i)$ obtained from tables 2.2 and 2.3, we can solve for the harmonic constant α_i as follows:

B_i/A_i		2.11a
$\alpha_i = Tan^{-1}$	(B_i/A_i)	2.11b
H _i can also	be determined from the following relationship:	
$B_i = H_i Sin$	α _i	2.12a
$H_i = B_i / Sin$	α_{i}	2.12b

3. RESULTS AND ANALYSIS OF RESULTS

The results and analysis of results of the work done are presented in sections 3.1 and 3.2.

3.1 Results

The results of the least squares harmonic analysis are presented in this section. Table 3.1 shows the least squares solution and the residuals from the least squares adjustment, while table 3.2 shows the tidal characteristics of the eighteen constituents used for the least squares adjustment.

S/N	Least Squares Solution (X)	Residuals from Adjustment (V=AX-L)
1	0.8955061328	-3.56E-14
2	-0.4934201491	-9.05E-14
3	-0.0596395818	-1.10E-13
4	-0.1089335765	-1.13E-15
5	0.1336482689	4.01E-14
6	-0.1033088931	-2.64E-14
7	0.0592944342	-3.16E-13
8	-0.0297730983	-4.80E-15
9	-0.0266593669	-3.64E-14
10	0.0924520282	1.30E-13
11	-0.1013088968	2.29E-14
12	0.0178565621	1.19E-13
13	0.0237078003	-7.13E-13
14	0.0344841015	-2.22E-14
15	-0.0117571831	6.27E-14
16	-0.0111300358	-5.99E-13
17	-0.0229343292	5.06E-13
18	0.0091126804	-3.46E-13
19	0.0320225152	3.99E-15
20	0.0001806800	2.03E-13
21	0.0007702764	1.62E-13
22	-0.0013186013	-9.43E-13
23	-0.0015664692	-2.31E-12
24	0.0066212762	-1.09E-12
25	0.0055185843	-7.28E-13

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6 – 10 May 2013

26	-0.0095449268	-8.98E-13
27	0.0104535647	-3.89E-13
28	0.0011717711	8.44E-13
29	0.0023108752	6.81E-13
30	-0.0034879694	2.92E-13
31	0.0082143343	7.42E-13
32	0.0005404965	-8.43E-13
33	-0.0000773116	1.98E-13
34	0.0015285740	2.25E-13
35	0.0002063698	5.28E-13
36	0.0016164270	-8.08E-13
37	-0.0000454650	1.45E-13

Table 3.2: Tidal Characteristics of the Eighteen Constituents used for Least Squares Adjustment

S/N	Constituent Name	Constituent Speed (m/s)	Amplitudes (H) (m)	Nodal Factor (F)	V+U (Deg)	Phase Lag (Deg)
1	M2	28.9841042000	0.1433380234	1.0063923852	1.2854605886	186.8918952806
2	S2	30.000000000	0.2466006241	1.000000000	360.0000000000	129.1826711369
3	N2	28.4397295000	0.2778514447	1.0063923852	281.6303114864	150.1462078758
4	K2	30.0821373000	0.0308251429	0.9682220264	83.5240317641	221.8418364774
5	K1	15.0410686000	0.1623680664	0.9953671368	228.0175372109	312.3828149372
6	01	13.9430356000	0.0269270663	0.9920402910	93.4467282115	53.0131767945
7	P1	14.9589314000	0.0688045195	1.000000000	98.6537475120	341.1734450712
8	MSf	1.0158958000	0.0671200035	1.0063923852	358.7145394114	244.1126892071
9	2N2	27.8953548000	0.0320332562	1.0063923852	201.9751623842	74.1151819934
10	MO3	42.9271400000	0.0007911065	0.9983817946	94.7321888001	76.7990608860
11	MK3	44.0251729000	0.0016101879	1.0017299069	229.3029977995	229.9104510050
12	MN4	57.4238337000	0.0057122694	1.0128256329	282.9157720751	39.8099325798
13	M4	57.9682084000	0.0494229282	1.0128256329	2.5709211773	132.3985370134
14	SN4	58.4397300000	0.0023374243	1.0063923852	281.6303114864	63.1118871266
15	MS4	58.9841042000	0.0158124501	1.0063923852	1.2854605886	113.0070406986
16	2MN6	88.4079380000	-0.0001086132	1.0193000044	284.2012326637	351.8597318230
17	M6	86.9523127000	0.0002364713	1.0193000044	3.8563817659	7.6889020828
18	2MS6	87.9682080000	-0.0000578705	1.0128256329	2.5709211773	358.3888753874

3.2 Analysis of Results

Out of the 1224 hourly datasets available, only 1220 datasets were used for the harmonic analysis. The remaining 24 hourly data were reserved for validating the predicted tides. Predicted tides were made for 1224 hours starting from the initial time of the observed data. The 1220 observed data used for the harmonic analysis with the 24 reserved tidal data were used to validate the tidal prediction from the model. A sample of 48 datasets from the validation data and predicted data are shown in table 3.3 below.

Table 3.3: Sample Validation Data

						OBSERVED	PREDICTED		
YEAR	MONTH	DAY	HOUR	MIN	SEC	TIDE	TIDE	DIFFERENCE	REMARK
2010	10	30	0	0	0	1.139	1.117	-0.022	Prediction within observed data
2010	10	30	1	0	0	0.939	0.913	-0.026	Prediction within observed data
2010	10	30	2	0	0	0.749	0.729	-0.020	Prediction within observed data
2010	10	30	3	0	0	0.665	0.613	-0.051	Prediction within observed data
2010	10	30	4	0	0	0.643	0.586	-0.058	Prediction within observed data
2010	10	30	5	0	0	0.675	0.642	-0.033	Prediction within observed data

T TS06D - Hydrography in Practice - 6656

Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6 – 10 May 2013 10/17

100 10 30 6 0 0.802 0.765 -0.037 Prediction within observed data 2010 10 30 8 0 0 1.118 1.085 -0.034 Prediction within observed data 2010 10 30 8 0 0 1.126 1.277 -0.009 Prediction within observed data 2010 10 30 11 0 0 1.224 1.203 -0.019 Prediction within observed data 2010 10 30 11 0 0 1.055 1.455 -0.043 Prediction within observed data 2010 10 30 14 0 0 0.0551 0.0435 -0.046 Prediction within observed data 2010 10 30 14 0 0 0.0433 0.388 -0.044 Prediction within observed data 2010 10 30 14 0 0 0.0433 0.388 -0.0414 Prediction within observed data <th>r</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th>	r			-			-			
2010 10 30 8 0 1.118 1.085 -0.034 Prediction within observed data 2010 10 30 9 0 0 1.224 1.208 -0.015 Prediction within observed data 2010 10 30 11 0 0 1.224 1.203 -0.021 Prediction within observed data 2010 10 30 113 0 0 1.254 1.203 -0.021 Prediction within observed data 2010 10 30 14 0 0 0.654 0.597 -0.058 Prediction within observed data 2010 10 30 15 0 0 0.4040 -0.338 -0.044 Prediction within observed data 2010 10 30 17 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 18 0 0 0.519 -0.030 Prediction within observed data	2010	10	30	6	0	0	0.802	0.765	-0.037	Prediction within observed data
2010 10 30 9 0 1.224 1.208 -0.015 Prediction within observed data 2010 10 30 11 0 0 1.226 1.257 -0.009 Prediction within observed data 2010 10 30 11 0 0 1.224 1.203 -0.021 Prediction within observed data 2010 10 30 114 0 0 0.865 0.822 -0.043 Prediction within observed data 2010 10 30 114 0 0 0.654 0.597 -0.058 Prediction within observed data 2010 10 30 115 0 0 0.433 0.388 -0.046 Prediction within observed data 2010 10 30 17 0 0 0.549 0.519 -0.028 Prediction within observed data 2010 10 30 12 0 0 0.739 0.721 -0.028 Prediction within observed data <td>2010</td> <td>10</td> <td>30</td> <td>7</td> <td>0</td> <td>0</td> <td>0.949</td> <td>0.924</td> <td>-0.025</td> <td>Prediction within observed data</td>	2010	10	30	7	0	0	0.949	0.924	-0.025	Prediction within observed data
2010 10 30 10 0 0 1.266 1.257 -0.009 Prediction within observed data 2010 10 30 11 0 0 1.224 1.203 -0.021 Prediction within observed data 2010 10 30 13 0 0 0.865 0.822 -0.043 Prediction within observed data 2010 10 30 15 0 0 0.654 0.527 -0.043 Prediction within observed data 2010 10 30 15 0 0 0.441 0.355 -0.046 Prediction within observed data 2010 10 30 17 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 18 0 0.549 0.721 -0.028 Prediction within observed data 2010 10 30 21 0 0 1.428 -0.013 Prediction within observed data 2	2010	10	30	8	0	0	1.118	1.085	-0.034	Prediction within observed data
2010 10 30 11 0 0 1.224 1.203 -0.021 Prediction within observed data 2010 10 30 12 0 0 0.865 0.822 -0.013 Prediction within observed data 2010 10 30 14 0 0 0.865 0.822 -0.043 Prediction within observed data 2010 10 30 16 0 0.496 0.428 -0.068 Prediction within observed data 2010 10 30 16 0 0.4433 0.388 -0.044 Prediction within observed data 2010 10 30 17 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 21 0 0 0.749 0.711 -0.028 Prediction within observed data 2010 10 30 21 0 0 1.234 1.428 -0.013 Prediction within observed data	2010	10	30	9	0	0	1.224	1.208	-0.015	Prediction within observed data
2010 10 30 12 0 0 1.055 1.045 0.010 Prediction within observed data 2010 10 30 13 0 0 0.865 0.822 0.043 Prediction within observed data 2010 10 30 15 0 0 0.496 0.058 Prediction within observed data 2010 10 30 16 0 0.496 0.428 -0.068 Prediction within observed data 2010 10 30 17 0 0 0.433 0.588 -0.044 Prediction within observed data 2010 10 30 18 0 0 0.749 0.711 -0.028 Prediction within observed data 2010 10 30 21 0 0 1.203 1.187 -0.013 Prediction within observed data 2010 10 30 23 0 0 1.433 1.428 -0.013 Prediction within observed data	2010	10	30	10	0	0	1.266	1.257	-0.009	Prediction within observed data
2010 10 30 13 0 0.865 0.822 -0.043 Prediction within observed data 2010 10 30 14 0 0 0.654 0.597 -0.058 Prediction within observed data 2010 10 30 15 0 0 0.496 0.428 -0.068 Prediction within observed data 2010 10 30 17 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 17 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 18 0 0 0.433 1.187 -0.016 Prediction within observed data 2010 10 30 21 0 0 1.233 1.187 -0.013 Prediction within observed data 2010 10 31 1 0 0 1.234 1.428 -0.017 Prediction beyond observed data	2010	10	30	11	0	0	1.224	1.203	-0.021	Prediction within observed data
2010 10 30 14 0 0.654 0.577 -0.058 Prediction within observed data 2010 10 30 15 0 0 0.496 0.428 -0.068 Prediction within observed data 2010 10 30 17 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 18 0 0 0.519 -0.030 Prediction within observed data 2010 10 30 20 0 0 0.749 0.721 -0.030 Prediction within observed data 2010 10 30 21 0 0 1.203 1.187 -0.016 Prediction within observed data 2010 10 30 23 0 0 1.445 1.428 -0.017 Prediction within observed data 2010 10 31 1 0 0 1.433 1.209 -0.026 Prediction beyond observed data 20	2010	10	30	12	0	0	1.055	1.045	-0.010	Prediction within observed data
2010 10 30 15 0 0 0.496 0.428 -0.068 Prediction within observed data 2010 10 30 16 0 0.401 0.355 -0.046 Prediction within observed data 2010 10 30 17 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 19 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 19 0 0 0.749 0.721 -0.028 Prediction within observed data 2010 10 30 21 0 0 1.233 1.187 -0.016 Prediction within observed data 2010 10 31 0 0 1.445 1.428 -0.017 Prediction beyond observed data 2010 10 31 1 0 0 1.234 1.209 -0.026 Prediction beyond observed data <td< td=""><td>2010</td><td>10</td><td>30</td><td>13</td><td>0</td><td>0</td><td>0.865</td><td>0.822</td><td>-0.043</td><td>Prediction within observed data</td></td<>	2010	10	30	13	0	0	0.865	0.822	-0.043	Prediction within observed data
2010 10 30 16 0 0.401 0.355 -0.046 Prediction within observed data 2010 10 30 17 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 18 0 0 0.519 -0.030 Prediction within observed data 2010 10 30 20 0 0 0.749 0.721 -0.028 Prediction within observed data 2010 10 30 21 0 0 1.203 1.187 -0.016 Prediction within observed data 2010 10 30 22 0 0 1.403 1.374 -0.017 Prediction within observed data 2010 10 31 1 0 0 1.423 1.209 -0.026 Prediction beyond observed data 2010 10 31 3 0 0 0.559 0.508 -0.051 Prediction beyond observed data 201	2010	10	30	14	0	0	0.654	0.597	-0.058	Prediction within observed data
2010 10 30 17 0 0 0.433 0.388 -0.044 Prediction within observed data 2010 10 30 18 0 0 0.549 0.519 -0.030 Prediction within observed data 2010 10 30 20 0 0 0.749 0.721 -0.028 Prediction within observed data 2010 10 30 21 0 0 1.203 1.187 -0.016 Prediction within observed data 2010 10 30 22 0 0 1.445 1.428 -0.017 Prediction within observed data 2010 10 31 0 0 1.445 1.428 -0.017 Prediction beyond observed data 2010 10 31 1 0 0 1.234 1.209 -0.026 Prediction beyond observed data 2010 10 31 3 0 0 0.643 0.585 -0.048 Prediction beyond observed data	2010	10	30	15	0	0	0.496	0.428	-0.068	Prediction within observed data
2010 10 30 18 0 0 0.549 0.519 -0.030 Prediction within observed data 2010 10 30 20 0 0 0.749 0.721 -0.028 Prediction within observed data 2010 10 30 21 0 0 1.203 1.187 -0.016 Prediction within observed data 2010 10 30 22 0 0 1.371 1.359 -0.013 Prediction within observed data 2010 10 31 0 0 1.445 1.428 -0.017 Prediction beyond observed data 2010 10 31 1 0 0 1.234 1.209 -0.026 Prediction beyond observed data 2010 10 31 2 0 0 1.023 0.981 -0.042 Prediction beyond observed data 2010 10 31 3 0 0 0.585 -0.048 Prediction beyond observed data 2010<	2010	10	30	16	0	0	0.401	0.355	-0.046	Prediction within observed data
2010 10 30 19 0 0.749 0.721 0.28 Prediction within observed data 2010 10 30 20 0 0 0.992 0.958 0.033 Prediction within observed data 2010 10 30 21 0 0 1.203 1.187 0.016 Prediction within observed data 2010 10 30 22 0 0 1.371 1.359 0.013 Prediction within observed data 2010 10 31 0 0 1.445 1.428 0.017 Prediction beyond observed data 2010 10 31 1 0 0 1.234 1.209 0.026 Prediction beyond observed data 2010 10 31 2 0 0 1.023 0.981 0.042 Prediction beyond observed data 2010 10 31 4 0 0 0.643 0.585 0.051 Prediction beyond observed data	2010	10	30	17	0	0	0.433	0.388	-0.044	Prediction within observed data
2010 10 30 20 0 0 0.992 0.958 -0.033 Prediction within observed data 2010 10 30 21 0 0 1.203 1.187 -0.016 Prediction within observed data 2010 10 30 22 0 0 1.371 1.359 -0.013 Prediction within observed data 2010 10 30 23 0 0 1.445 1.428 -0.017 Prediction within observed data 2010 10 31 0 0 0 1.403 1.374 -0.029 Prediction beyond observed data 2010 10 31 2 0 0 1.023 0.981 -0.042 Prediction beyond observed data 2010 10 31 4 0 0 0.643 0.585 -0.059 Prediction beyond observed data 2010 10 31 5 0 0 0.559 0.508 -0.051 Prediction beyond observed data	2010	10	30	18	0	0	0.549	0.519	-0.030	Prediction within observed data
2010 10 30 21 0 0 1.203 1.187 -0.016 Prediction within observed data 2010 10 30 22 0 0 1.371 1.359 -0.013 Prediction within observed data 2010 10 31 0 0 1.445 1.428 -0.017 Prediction within observed data 2010 10 31 0 0 1.403 1.374 -0.029 Prediction beyond observed data 2010 10 31 1 0 0 1.234 1.209 -0.026 Prediction beyond observed data 2010 10 31 2 0 0 0.802 0.754 -0.048 Prediction beyond observed data 2010 10 31 4 0 0 0.559 0.508 -0.051 Prediction beyond observed data 2010 10 31 7 0 0 0.696 0.651 -0.045 Prediction beyond observed data 201	2010	10	30	19	0	0	0.749	0.721	-0.028	Prediction within observed data
2010 10 30 22 0 0 1.371 1.359 -0.013 Prediction within observed data 2010 10 30 23 0 0 1.445 1.428 -0.017 Prediction within observed data 2010 10 31 0 0 0 1.433 1.374 -0.029 Prediction beyond observed data 2010 10 31 1 0 0 1.234 1.209 -0.026 Prediction beyond observed data 2010 10 31 2 0 0 1.023 0.981 -0.042 Prediction beyond observed data 2010 10 31 4 0 0 0.643 0.585 -0.059 Prediction beyond observed data 2010 10 31 5 0 0 0.559 0.508 -0.051 Prediction beyond observed data 2010 10 31 7 0 0 0.696 0.651 -0.045 Prediction beyond observed data </td <td>2010</td> <td>10</td> <td>30</td> <td>20</td> <td>0</td> <td>0</td> <td>0.992</td> <td>0.958</td> <td>-0.033</td> <td>Prediction within observed data</td>	2010	10	30	20	0	0	0.992	0.958	-0.033	Prediction within observed data
2010 10 30 23 0 0 1.445 1.428 -0.017 Prediction within observed data 2010 10 31 0 0 0 1.403 1.374 -0.029 Prediction beyond observed data 2010 10 31 1 0 0 1.234 1.209 -0.026 Prediction beyond observed data 2010 10 31 2 0 0 1.023 0.981 -0.042 Prediction beyond observed data 2010 10 31 3 0 0 0.802 0.754 -0.048 Prediction beyond observed data 2010 10 31 4 0 0 0.643 0.585 -0.059 Prediction beyond observed data 2010 10 31 5 0 0 0.559 0.508 -0.051 Prediction beyond observed data 2010 10 31 7 0 0 0.656 0.831 -0.023 Prediction beyond observed data <td>2010</td> <td>10</td> <td>30</td> <td>21</td> <td>0</td> <td>0</td> <td>1.203</td> <td>1.187</td> <td>-0.016</td> <td>Prediction within observed data</td>	2010	10	30	21	0	0	1.203	1.187	-0.016	Prediction within observed data
2010 10 31 0 0 1.403 1.374 -0.029 Prediction beyond observed data 2010 10 31 1 0 0 1.234 1.209 -0.026 Prediction beyond observed data 2010 10 31 2 0 0 1.023 0.981 -0.042 Prediction beyond observed data 2010 10 31 3 0 0 0.802 0.754 -0.048 Prediction beyond observed data 2010 10 31 4 0 0 0.643 0.585 -0.059 Prediction beyond observed data 2010 10 31 5 0 0 0.559 0.508 -0.051 Prediction beyond observed data 2010 10 31 7 0 0 0.696 0.651 -0.045 Prediction beyond observed data 2010 10 31 8 0 0 0.865 0.831 -0.023 Prediction beyond observed data <tr< td=""><td>2010</td><td>10</td><td>30</td><td>22</td><td>0</td><td>0</td><td>1.371</td><td>1.359</td><td>-0.013</td><td>Prediction within observed data</td></tr<>	2010	10	30	22	0	0	1.371	1.359	-0.013	Prediction within observed data
2010 10 31 1 0 0 1.234 1.209 -0.026 Prediction beyond observed data 2010 10 31 2 0 0 1.023 0.981 -0.042 Prediction beyond observed data 2010 10 31 3 0 0 0.802 0.754 -0.048 Prediction beyond observed data 2010 10 31 4 0 0 0.643 0.585 -0.059 Prediction beyond observed data 2010 10 31 5 0 0 0.559 0.508 -0.051 Prediction beyond observed data 2010 10 31 6 0 0 0.591 0.534 -0.057 Prediction beyond observed data 2010 10 31 8 0 0 0.6665 0.831 -0.045 Prediction beyond observed data 2010 10 31 9 0 0 1.224 1.204 -0.020 Prediction beyond observed data <td>2010</td> <td>10</td> <td>30</td> <td>23</td> <td>0</td> <td>0</td> <td>1.445</td> <td>1.428</td> <td>-0.017</td> <td>Prediction within observed data</td>	2010	10	30	23	0	0	1.445	1.428	-0.017	Prediction within observed data
2010 10 31 2 0 0 1.023 0.981 -0.042 Prediction beyond observed data 2010 10 31 3 0 0 0.802 0.754 -0.048 Prediction beyond observed data 2010 10 31 4 0 0 0.643 0.585 -0.059 Prediction beyond observed data 2010 10 31 5 0 0 0.559 0.508 -0.051 Prediction beyond observed data 2010 10 31 6 0 0 0.591 0.534 -0.057 Prediction beyond observed data 2010 10 31 7 0 0 0.696 0.651 -0.045 Prediction beyond observed data 2010 10 31 8 0 0 0.865 0.831 -0.034 Prediction beyond observed data 2010 10 31 10 0 1.224 1.204 -0.020 Prediction beyond observed data <t< td=""><td>2010</td><td>10</td><td>31</td><td>0</td><td>0</td><td>0</td><td>1.403</td><td>1.374</td><td>-0.029</td><td>Prediction beyond observed data</td></t<>	2010	10	31	0	0	0	1.403	1.374	-0.029	Prediction beyond observed data
2010 10 31 3 0 0 0.802 0.754 -0.048 Prediction beyond observed data 2010 10 31 4 0 0 0.643 0.585 -0.059 Prediction beyond observed data 2010 10 31 5 0 0 0.559 0.508 -0.051 Prediction beyond observed data 2010 10 31 6 0 0 0.591 0.534 -0.057 Prediction beyond observed data 2010 10 31 7 0 0 0.696 0.651 -0.045 Prediction beyond observed data 2010 10 31 8 0 0 0.865 0.831 -0.045 Prediction beyond observed data 2010 10 31 9 0 0 1.055 1.032 -0.023 Prediction beyond observed data 2010 10 31 11 0 0 1.298 1.296 -0.001 Prediction beyond observed data <td>2010</td> <td>10</td> <td>31</td> <td>1</td> <td>0</td> <td>0</td> <td>1.234</td> <td>1.209</td> <td>-0.026</td> <td>Prediction beyond observed data</td>	2010	10	31	1	0	0	1.234	1.209	-0.026	Prediction beyond observed data
2010 10 31 4 0 0 0.643 0.585 -0.059 Prediction beyond observed data 2010 10 31 5 0 0 0.559 0.508 -0.051 Prediction beyond observed data 2010 10 31 6 0 0 0.591 0.534 -0.057 Prediction beyond observed data 2010 10 31 7 0 0 0.696 0.651 -0.045 Prediction beyond observed data 2010 10 31 8 0 0 0.865 0.831 -0.034 Prediction beyond observed data 2010 10 31 9 0 0 1.055 1.032 -0.023 Prediction beyond observed data 2010 10 31 11 0 0 1.276 1.274 -0.003 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data </td <td>2010</td> <td>10</td> <td>31</td> <td>2</td> <td>0</td> <td>0</td> <td>1.023</td> <td>0.981</td> <td>-0.042</td> <td>Prediction beyond observed data</td>	2010	10	31	2	0	0	1.023	0.981	-0.042	Prediction beyond observed data
2010 10 31 5 0 0 0.559 0.508 -0.051 Prediction beyond observed data 2010 10 31 6 0 0 0.591 0.534 -0.057 Prediction beyond observed data 2010 10 31 7 0 0 0.696 0.651 -0.045 Prediction beyond observed data 2010 10 31 8 0 0 0.865 0.831 -0.045 Prediction beyond observed data 2010 10 31 9 0 0 1.055 1.032 -0.023 Prediction beyond observed data 2010 10 31 11 0 0 1.224 1.204 -0.020 Prediction beyond observed data 2010 10 31 11 0 0 1.276 1.274 -0.003 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data<	2010	10	31	3	0	0	0.802	0.754	-0.048	Prediction beyond observed data
2010 10 31 6 0 0.591 0.534 -0.057 Prediction beyond observed data 2010 10 31 7 0 0 0.696 0.651 -0.045 Prediction beyond observed data 2010 10 31 8 0 0 0.865 0.831 -0.045 Prediction beyond observed data 2010 10 31 9 0 0 1.055 1.032 -0.023 Prediction beyond observed data 2010 10 31 10 0 0 1.224 1.204 -0.020 Prediction beyond observed data 2010 10 31 11 0 0 1.224 1.204 -0.020 Prediction beyond observed data 2010 10 31 11 0 0 1.276 1.274 -0.003 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data	2010	10	31	4	0	0	0.643	0.585	-0.059	Prediction beyond observed data
2010 10 31 7 0 0 0.696 0.651 -0.045 Prediction beyond observed data 2010 10 31 8 0 0 0.865 0.831 -0.034 Prediction beyond observed data 2010 10 31 9 0 0 1.055 1.032 -0.023 Prediction beyond observed data 2010 10 31 10 0 0 1.224 1.204 -0.020 Prediction beyond observed data 2010 10 31 11 0 0 1.298 1.296 -0.001 Prediction beyond observed data 2010 10 31 12 0 0 1.276 1.274 -0.003 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data 2010 10 31 14 0 0 0.918 0.909 -0.004 Prediction beyond observed dat	2010	10	31	5	0	0	0.559	0.508	-0.051	Prediction beyond observed data
2010 10 31 8 0 0 0.865 0.831 -0.034 Prediction beyond observed data 2010 10 31 9 0 0 1.055 1.032 -0.023 Prediction beyond observed data 2010 10 31 10 0 0 1.224 1.204 -0.020 Prediction beyond observed data 2010 10 31 11 0 0 1.224 1.204 -0.020 Prediction beyond observed data 2010 10 31 11 0 0 1.298 1.296 -0.001 Prediction beyond observed data 2010 10 31 12 0 0 1.276 1.274 -0.003 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data 2010 10 31 15 0 0 0.665 0.661 -0.004 Prediction beyond observed da	2010	10	31	6	0	0	0.591	0.534	-0.057	Prediction beyond observed data
2010 10 31 9 0 0 1.055 1.032 -0.023 Prediction beyond observed data 2010 10 31 10 0 0 1.224 1.204 -0.020 Prediction beyond observed data 2010 10 31 11 0 0 1.298 1.296 -0.001 Prediction beyond observed data 2010 10 31 12 0 0 1.276 1.274 -0.003 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data 2010 10 31 14 0 0 0.918 0.909 -0.008 Prediction beyond observed data 2010 10 31 16 0 0 0.475 0.454 -0.020 Prediction beyond observed d	2010	10	31	7	0	0	0.696	0.651	-0.045	Prediction beyond observed data
2010 10 31 10 0 0 1.224 1.204 -0.020 Prediction beyond observed data 2010 10 31 11 0 0 1.298 1.296 -0.001 Prediction beyond observed data 2010 10 31 12 0 0 1.276 1.274 -0.003 Prediction beyond observed data 2010 10 31 12 0 0 1.150 1.134 -0.003 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data 2010 10 31 14 0 0 0.918 0.909 -0.008 Prediction beyond observed data 2010 10 31 15 0 0 0.665 0.661 -0.004 Prediction beyond observed data 2010 10 31 16 0 0 0.369 0.343 -0.020 Prediction beyond observed	2010	10	31	8	0	0	0.865	0.831	-0.034	Prediction beyond observed data
2010 10 31 11 0 0 1.298 1.296 -0.001 Prediction beyond observed data 2010 10 31 12 0 0 1.276 1.274 -0.003 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data 2010 10 31 14 0 0 0.918 0.909 -0.008 Prediction beyond observed data 2010 10 31 15 0 0 0.665 0.661 -0.004 Prediction beyond observed data 2010 10 31 16 0 0.475 0.454 -0.020 Prediction beyond observed data 2010 10 31 17 0 0 0.369 0.343 -0.027 Prediction beyond observed data 2010 10 31 18 0 0 0.390 0.351 -0.039 Prediction beyond observed data	2010	10	31	9	0	0	1.055	1.032	-0.023	Prediction beyond observed data
2010 10 31 12 0 0 1.276 1.274 -0.003 Prediction beyond observed data 2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data 2010 10 31 14 0 0 0.918 0.909 -0.008 Prediction beyond observed data 2010 10 31 15 0 0 0.665 0.661 -0.004 Prediction beyond observed data 2010 10 31 16 0 0 0.475 0.454 -0.020 Prediction beyond observed data 2010 10 31 17 0 0 0.369 0.343 -0.027 Prediction beyond observed data 2010 10 31 18 0 0 0.390 0.351 -0.039 Prediction beyond observed data 2010 10 31 19 0 0 0.517 0.478 -0.039 Prediction beyond observed	2010	10	31	10	0	0	1.224	1.204	-0.020	Prediction beyond observed data
2010 10 31 13 0 0 1.150 1.134 -0.016 Prediction beyond observed data 2010 10 31 14 0 0 0.918 0.909 -0.008 Prediction beyond observed data 2010 10 31 15 0 0 0.665 0.661 -0.004 Prediction beyond observed data 2010 10 31 16 0 0 0.475 0.454 -0.020 Prediction beyond observed data 2010 10 31 17 0 0 0.369 0.343 -0.027 Prediction beyond observed data 2010 10 31 18 0 0 0.390 0.351 -0.039 Prediction beyond observed data 2010 10 31 19 0 0 0.517 0.478 -0.039 Prediction beyond observed data 2010 10 31 20 0 0 0.738 0.700 -0.039 Prediction beyond observed	2010	10	31	11	0	0	1.298	1.296	-0.001	Prediction beyond observed data
2010 10 31 14 0 0 0.918 0.909 -0.008 Prediction beyond observed data 2010 10 31 15 0 0 0.665 0.661 -0.004 Prediction beyond observed data 2010 10 31 16 0 0 0.475 0.454 -0.020 Prediction beyond observed data 2010 10 31 17 0 0 0.369 0.343 -0.027 Prediction beyond observed data 2010 10 31 18 0 0 0.351 -0.039 Prediction beyond observed data 2010 10 31 19 0 0.517 0.478 -0.039 Prediction beyond observed data 2010 10 31 20 0 0 0.738 0.700 -0.039 Prediction beyond observed data	2010	10	31	12	0	0	1.276	1.274	-0.003	Prediction beyond observed data
2010 10 31 15 0 0 0.665 0.661 -0.004 Prediction beyond observed data 2010 10 31 16 0 0 0.475 0.454 -0.020 Prediction beyond observed data 2010 10 31 17 0 0 0.369 0.343 -0.027 Prediction beyond observed data 2010 10 31 18 0 0 0.390 0.351 -0.039 Prediction beyond observed data 2010 10 31 19 0 0 0.517 0.478 -0.039 Prediction beyond observed data 2010 10 31 20 0 0 0.738 0.700 -0.039 Prediction beyond observed data	2010	10	31	13	0	0	1.150	1.134	-0.016	Prediction beyond observed data
2010 10 31 15 0 0 0.665 0.661 -0.004 Prediction beyond observed data 2010 10 31 16 0 0 0.475 0.454 -0.020 Prediction beyond observed data 2010 10 31 17 0 0 0.369 0.343 -0.027 Prediction beyond observed data 2010 10 31 18 0 0 0.390 0.351 -0.039 Prediction beyond observed data 2010 10 31 19 0 0 0.517 0.478 -0.039 Prediction beyond observed data 2010 10 31 20 0 0 0.738 0.700 -0.039 Prediction beyond observed data	2010	10	31	14	0	0		0.909	-0.008	Prediction beyond observed data
2010 10 31 16 0 0.475 0.454 -0.020 Prediction beyond observed data 2010 10 31 17 0 0 0.369 0.343 -0.027 Prediction beyond observed data 2010 10 31 18 0 0 0.369 0.343 -0.027 Prediction beyond observed data 2010 10 31 18 0 0 0.390 0.351 -0.039 Prediction beyond observed data 2010 10 31 19 0 0 0.517 0.478 -0.039 Prediction beyond observed data 2010 10 31 20 0 0 0.738 0.700 -0.039 Prediction beyond observed data	2010	10	31		0	0	0.665	0.661	-0.004	Prediction beyond observed data
2010 10 31 17 0 0 0.369 0.343 -0.027 Prediction beyond observed data 2010 10 31 18 0 0 0.390 0.351 -0.039 Prediction beyond observed data 2010 10 31 19 0 0 0.517 0.478 -0.039 Prediction beyond observed data 2010 10 31 20 0 0 0.738 0.700 -0.039 Prediction beyond observed data	2010	10		16		0	0.475	0.454	-0.020	Prediction beyond observed data
2010 10 31 18 0 0 0.390 0.351 -0.039 Prediction beyond observed data 2010 10 31 19 0 0 0.517 0.478 -0.039 Prediction beyond observed data 2010 10 31 20 0 0 0.738 0.700 -0.039 Prediction beyond observed data	2010	10	31	17	0	0		0.343	-0.027	Prediction beyond observed data
2010 10 31 19 0 0.517 0.478 -0.039 Prediction beyond observed data 2010 10 31 20 0 0 0.738 0.700 -0.039 Prediction beyond observed data	2010	10		18	0	0			-0.039	Prediction beyond observed data
2010 10 31 20 0 0.738 0.700 -0.039 Prediction beyond observed data	2010	10	31	19		0		0.478	-0.039	Prediction beyond observed data
	2010	10	31	20	0	0		0.700	-0.039	Prediction beyond observed data
-500 -500	2010	10	31	21	0	0	1.002	0.974	-0.028	Prediction beyond observed data

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6 – 10 May 2013 11/17

2010	10	31	22	0	0	1.255	1.244	-0.011	Prediction beyond observed data
2010	10	31	23	0	0	1.456	1.449	-0.007	Prediction beyond observed data

3.2.1 Root Mean Square Error

The Root-Mean-Square error (RMSE) of the observed and predicted hourly tides was found using equation 2.13 given by (<u>www.nauticalcharts.noaa.gov/csdl/skillassess.html</u>, 2012).

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} e_i^2}$$
ved tide at time i
$$N = 1224$$
3.1

RMSE = 0.02143595

3.2.2 Standard Deviation of Observed and Predicted Tides

The standard deviations for the observed and predicted tides are given by Keller and Warrack (2003) as:

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2},$$
3.2

Mean of 1224 tidal predictions = 0.892834The Standard Deviation of the Observed and Predicted Tides were calculated respectively as 0.000120 and 0.000119.

$$Sx_1 = 0.000120$$
 (Observed)
 $Sx_2 = 0.000119$ (Predicted)

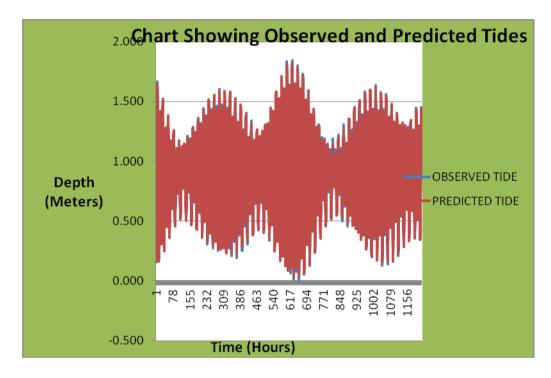
$$S_{X_1X_2} = \sqrt{\frac{(n_1 - 1)S_{X_1}^2 + (n_2 - 1)S_{X_2}^2}{n_1 + n_2 - 2}}.$$
3.3

The objective of the statistical test is to compare the two populations of observed tide and predicted tides (Keller and Warrack, 2003). The parameter is the difference between the two means, μ_1 and μ_2 (where μ_1 = mean of observed tide and μ_2 is the mean of the predicted tide).

$$\begin{array}{ll} H_0:\,(\mu_1-\mu_2)=& 0\\ H_1:\,(\mu_1-\mu_2)>& 0 \end{array}$$

The *t* statistic to test whether the means are different can be calculated as follows: The number of degrees of freedom of the test statistic is $v = n_1 + n_2 - 2$ = 1224 + 1224 - 2 = 2446

12/17


T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

The rejection region for a 5% significance level is $t > t_{\alpha,y} = t0.05,2446 = 1.645$ The rejection region for a 95% significance level is $t < t_{\alpha,y} = t0.95,2446 = -1.645$ $S_{x1x2} = \sqrt{\{(1223*\ 0.000000144 + 1223*0.000000142)/2446\}}$ t = 0.0000000143Since $t < t_{\alpha,y}$ we therefore accept the null hypothesis that mean of the observed tide

Since $t < t_{\alpha,y}$ we therefore accept the null hypothesis that mean of the observed tide is equal to the mean of the predicted tide.

3.2.3 Charts of Observed and Predicted Tides

Charts were made in the analysis of the results of this work. Figure 3.1 shows the chart of the observed and predicted tides. From the chart in figure 3.1, it can be seen that the observed tides and the predicted tides match to a greater extent.

Figure 3.1: Chart of Observed and Predicted Tides

The difference between the observed and the predicted tides is the residuals. Figure 3.2 snows the residuals of the observed and predicted tides.

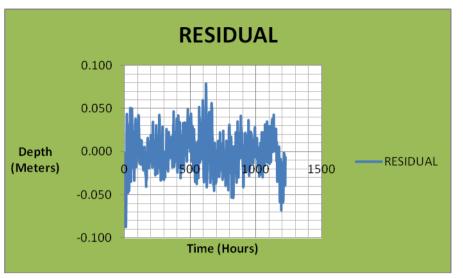


Figure 3.2: Chart Showing Residuals of Observed and Predicted Tides

The tidal heights for the 51st day have been predicted. This was carried out in order to predict tides outside the data used for adjustment within the Matlab program. The result provides a maximum residual of 0.059 meters.

5. CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In this work, 50 days water level data derived from pressure data recorded by WLR 7 water level recorder at an average depth of 1,000m at Bonga field was used to do a well detailed tidal harmonic analysis.

In the analysis, the harmonic constants such as the amplitudes and the phase lags for eighteen tidal constituents were determined and prediction starting from the initial time of observation in 2008 to December 2013 was made at 10 minutes intervals. Fifty one days hourly predictions were however made to validate the work done.

Statistical analysis of the predicted tides with validation data was made and the maximum deviation of the predicted tides from the validation data was 0.08m. The accuracy of the harmonic analysis and prediction is high despite the fact that only 50 days data was used for the analysis.

The results of this work should be used to support deep marine operations in the country.

5.2 Recommendation

The following recommendations are made as a result of the work carried out:

i. Tidal data covering a period of at least one year should be collected at deep offshore

and shallow water locations for harmonic analysis and prediction so as to support marine operations in oil industries.

- ii. Tide Gauge Stations or buoys capable of being tracked by satellites should be placed along the Nigerian coast for further tidal studies on the Nigerian coastal waters.
- iii. Effort should also be made by governmental and non-governmental agencies to observe and analyse water current (using classical oceanographic equipment and satellite data) at various offshore and near shore locations around the Nigerian coastal waters to better understand the hydrodynamic forces operating in the Nigerian coastal environment.

REFERENCES

Badejo O.T., Olaleye, J.B. and Alademomi A.S., 2012: Prediction of Mean Water Level Using Short - Span Tidal Records for The University Of Lagos Lagoon, South Western Nigeria. Journal of Engineering Research JER 17, No. 3. Faculty of Engineering University of Lagos, Nigeria. pp52-67

Doodson, A. T. and Warburg, H. D., 1941: Admiralty Manual of Tides, Hydrographic Department, Admiralty. United Kingdom. 270pp.

Eluwa, E.C., 1991: Prediction of Vertical Tides by Least Squares Harmonic Analysis.M.Sc. Degree Project. Department of Surveying and Geoinformatics, University of Lagos, (Unpublished).

Keller, G. and Warrack, B., 2003: Statistics for Management and Economics. Sixth Edition, Thompson Learning Inc., Pacific Grove, USA. 832pp.

Schureman, P., 1958: Manual of harmonic analysis and prediction of tides. Department of Commerce, Coast and Geodetic Survey, Special Publication No. 98. U.S. Government Printing Office, Washington 317pp.

Stravisi, F., 1983: The IT Method for the Harmonic Tidal Prediction. Bollrtino Di Oceanologia Ed Applicata. Vol 1 N.3 Luglio. pp193-204.

www/en.wikipedia.org/wiki/Median_filter, 2012

www.aanderaa.com

www.nauticalcharts.noaa.gov/csdl/skillassess.html, 2012

BIOGRAPHICAL NOTES

DR. OLUSEGUN TEMITOPE BADEJO

Dr. O.T. Badejo graduated from the University of Lagos with a Bachelor of Science (B.Sc.) degree in Surveying in 1992. He also obtained a Master of Science (M.Sc.) degree in Surveying, in University of Lagos in 1996. His B.Sc. Project was on Sea Level Variation in a Coastal Seaport, while his M.Sc. research work was on Tidal Prediction Using Least Squares Approach. Dr. Badejo also has a Ph.D in Surveying and Geoinformatics. Dr. Badejo has worked with the Office of the Surveyor General of the Federation of Nigeria, and he is a

Senior Lecturer in Department of Surveying and Geoinformatics, University of Lagos, Nigeria. He is presently on sabbatical with Shell Nigeria Exploration and Production Company (SNEPCo). He is working on oil spill pollution transport and coastal processes. Dr. O.T. Badejo has over 25 publications, and he is a member of the Nigerian Institution of Surveyors (NIS) and Nigerian Hydrographic Society.

SURV. PETER EVARIE

Peter Evarie graduated with a B.Sc. (Surveying) and M.Sc. (Hydrographic Surveying) from the University of Lagos in 1986 and 1990 respectively. In 2004, he enrolled for the Masters in Business Administration (MBA) program at the University of Liverpool in the United Kingdom and graduated in 2006 specializing in investment strategies. During his B. Sc program at the University of Lagos, Peter won the best graduating student's prizes in Geodesy (The Adekunle Kukoyi's Prize) and Photogrammetry (The Adegboyega Ajayi Memorial Prize).

Peter has spent 21 years working for Shell in the land, swamp and offshore environments and he is currently the Head of Offshore Surveys and Metocean for the Shell Nigeria Exploration and Production Company Limited (SNEPCo) based in Lagos. He is a SURCON Registered Surveyor with extensive local and international experience and exposure. Prior to joining Shell, Peter lectured in a polytechnic in the 1980s/early 1990s, worked as a contractor staff at Shell and he is currently a part-time lecturer in Hydrographic Surveying at the University of Lagos.

In his Shell career, Peter has worked in Nigeria, United Kingdom and The Netherlands and has been exposed to the latest technologies in offshore surveys/construction, GIS applications and Metocean. For example, he was the GPS focal point for Shell Nigeria in the early 1990s and was responsible for the implementation of GPS technology in Shell Nigeria operations. The delivery of a major component that made GPS implementation a success at the time - "The determination of the 7-Shift Transformation Parameters from WGS 84 to Nigerian Local Datum" are still in use today for Southern Nigeria.

Peter has attended several local and international conferences and workshops and he is a member of the Nigerian Institution of Surveyors (NIS), Nigerian Hydrographic Society and the Institute of Navigation (ION). He is a certified Quality Management Systems (QMS) Auditor.

He is married with a daughter and has a passion for developing young surveyors, health/safety and travelling.

CONTACTS

Dr. Olusegun T. Badejo Department of Surveying and Geoinformatics University of Lagos Lagos NIGERIA

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6 – 10 May 2013 Tel.: 2348038636448 Email: <u>shegunbadejo@yahoo.com</u>, O.Badejo@shell.com

Surv. Peter Evarie Shell Nigeria Exploration and Production Company Limited (SNEPCo) 21/22 Freeman's House Marina Lagos NIGERIA Tel .:2348070322933 peter.evarie@shell.com

T TS06D - Hydrography in Practice - 6656 Olusegun Badejo, Peter Evarie, Nkem Anorue, and Sunday Alademomi Tidal Harmonic Analysis at Bonga Field

FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6 – 10 May 2013