

- Two parallel tubes of about 24,677m length, 9 m diameter
- The distance between both tubes of the tunnels is about 50 meters
- Cross-passages every 400 meters
- New high speed railway AVE León-Asturias
- Replace the existing railway line from end XIXth cent.
- Shortening:
 - From 57 km to 25 km distance
 - From more than one hour to 12 minutes

FIG Congress 2010 Facing the Challenges – Building the Capacity Sydney, Australia, 11-16 April 2010

Surface network design

<text>

Surface network computation						
	(
COMPARISON BROADCAST AND PRECISE EPH						
MADIZEDC		AX	A 1-	-(V V)	-(1-)	
MARKERS	$\Delta \Lambda$		0.000	0(X, Y)	0 007	
303	0.002	0.000	0.000	0.003	0.007	
302	0.002	0.000	0.000	0.004	0.007	
301	0.002	0.000	0.001	0.005	0.008	
204	0.001	0.000	0.000	0.005	0.007	
203	0.001	0.000	0.000	0.004	0.007	
202	0.001	0.000	0.000	0.005	0.007	
201	0.001	0.000	0.000	0.004	0.007	
104	0.001	0.000	0.000	0.005	0.008	
103	0.001	0.000	0.000	0.005	0.008	
102	0.001	0.000	0.000	0.005	0.008	
101	0.001	0.000	0.000	0.006	0.009	

<u>_</u>				
	CO D			

COMPARISON SIX hr. AND ONE hr. SESSIONS

MAKERS	ΔΧ	ΔΥ	Δh	$\sigma(X,Y)$	$\sigma(h)$
305	0.002	0.001	-0.005	0.006	0.009
303	0.001	0.003	-0.001	0.005	0.008
302	-0.005	0.002	-0.004	0.006	0.009
301	0.002	0.005	0.000	0.005	0.008
204	0.002	0.003	0.000	0.005	0.008
203	0.003	0.001	-0.002	0.005	0.007
202	-0.001	0.005	-0.003	0.005	0.008
201	0.000	0.004	-0.004	0.005	0.008
104	0.000	0.005	0.002	0.005	0.008
103	0.001	0.005	0.001	0.007	0.010
102	-0.002	0.004	0.000	0.006	0.009
101	0.009	0.005	0.007	0.007	0.009

Change of Geodetic Reference System

- As the original tunnel project was compiled on former ED50 datum, the surface network was transformed to this system from ETRS89
- A final study of azimuths was performed in both GRS's in order to analyse the error in orientation when changing the datum

Baseline	Azimuth ETRS89 (g)	Azimuth ED-50 (g)	Difference ETRS89-ED50 (cc)
	208.2708	208.2717	-8.6
201-202	164.7110	164.7115	-4.6
301-302	34.1250	34.1253	-2.8
301-303	56.8341	56.8343	-2.5
101-201	159.0928	159.0934	-5.6
101-301	163.0538	163.0544	-5.2
201-301	172.8165	172.8169	-4.0

Conclusions

- The values of the different breakthroughs done and checked have a maximum value of about 60 mm. These values are also consistent with the uncertainties previously computed.
- Given the results presented in this communication, the best suitable methodology for this type of work may have the following characteristics:
 - 1 Surface network observations must be done by GNSS techniques. Static method in each survey point must have multiple observations of at least 1 hour which guarantee repeatability and reliability. No improvement is achieved when using precise ephemeries
 - 2 If a geodetic datum change is required, a study of azimuths, in both systems, on the surface network must be performed to evaluate the loss of accuracy

Conclusions

□.

- 3 As the axis of the tunnel has to be free, the underground network must be designed as zig-zag traverses, in order to minimize lateral refraction error. Optimal traverses will have 250 m length legs. At least six sets of observations have to be performed.
- 4 Gyrotheodolite observations are needed to reduce the loss of accuracy on the transmission of azimuths in traverses of this length. For more than 4 km tunnel length the gyro observations should be performed every kilometre, observing two crossed axes, in order to minimize lateral refraction error. On critical areas, such as curves, the observations must be performed on each traverse axis.
- 5 Traverses along tunnel axis with legs of 375 m. are most suitable to control the underground network but the observation is restricted to be done when technical stops of drilling.

