# Application of a Multi-layer Perceptronfor Mass Valuation of Real Estates

# Tomasz BUDZYŃSKI, Poland

Key words: mass valuation of real estates, multi-layer perceptron, teaching algorithms.

#### SUMMARY

In the process of mass valuation of real estates models of regression, in particular multiple regression are applied. At the same time new methods of determination of real estate values are searched for, which will allow to ensure the higher accuracy of estimation. One of these methods are artificial neural networks (ANN). The most used type of ANN is a multi-layer perceptron. It ensures the highest accuracy of estimation among all types of artificial neural networks.

The paper presents general rules of operations of a multi-layer perceptron. Four teaching algorithms which may be used in the process of teaching the multi-layer perceptron are described: back propagation of errors, conjugate gradient descent, quasi-Newton and Levenberg-Marquardt.

In the practical part of the paper results of experiments concerning utilisation of a multi-layer perceptron for mass valuation of real estates are presented using an example of non-built-up areas planned for one-family houses, located in the city of Otwock close to Warszawa. Accuracy of determination of real estate values using the multi-layer perceptron taught by means of four mentioned above teaching algorithms are compared.

At the end conclusions resulting from performed experiments are presented.

# **Application of a Multi-layer Perceptronfor Mass Valuation of Real Estates**

## Tomasz BUDZYŃSKI, Poland

# **1. INTRODUCTION**

In the process of real estate valuation, and in particular, in the case of mass valuation, where statistical analysis methods are applied, new methods of determination of a real estate value are searched for, which would allow to achieve higher accuracy of results.

Artificial neural networks (ANN) represent one of methods which might be an alternative for the commonly applied method of multiple regression.

ANN are the highly sophisticated modelling technique, which allows to project functions of a very high level of complexity (Statsoft Polska Ltd., 2000). Their name originates from a network of brain nervous cells (McCluskey 1996). ANN have been created as a result of multiyear investigations performed in the field of artificial intelligence, which concerned, inter alia, construction of models of the basic structures which occur in a brain (Statsoft Polska Ltd. 2000).

A simplified neuron model has been applied in the ANN. It has been defined in the following way: Input signals (values) reach the neuron. They are the primary data values, which enter the network from outside or they are intermediate signals which originate from outputs of other networks, being the elements of the network. Every signal is introduced to the neuron through a connection of a specified strength (weight), which corresponds to the synapse ffectiveness in a biological neuron. Every neuron has one threshold value, which specifies the intensity of stimulation required for ignition.

Every neuron calculates the weighted total of its entries, and the level of stimulation, which is thus determined, becomes the argument of the activation function, which calculates the output value of the neuron.

Similarly to construction of a human's brain, ANN consist of many processing points (neurons), arranged in layers and of many mutual connections (synapses) between those points.

Many types of neural networks exist. Multi - layer perceptrons (MLP) with one or two hidden layers are mostly used.

Architecture of a multi-layer perceptron with one hidden layer is presented in Fig.1.

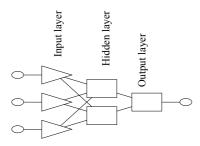



Fig. 1. Architecture of a multi-layer perceptron

Basing on investigations concerning utilisation of ANN for real estate valuation, it has been stated that – among investigated ANN models - the highest accuracy of determination of a real estate value may be obtained using the multi-layer perceptron (Wilkowski, Budzyński 2006).

Results obtained encouraged to continue investigations related to utilisation of the multi-layer perceptron for the needs of real estate valuation.

# **2. TEACHING THE MULTI-LAYER PERCEPTRON USING VARIOUS TEACHING ALGORITHMS**

Although ANN are software routines which simulate activities of neural networks, they are not "programmed"; instead, they are rather "taught"(trained) using various examples. In the case of utilisation of ANN for real estate valuations, such examples are: real estate prices including selling prices or the rent level.

Similarly to other types of neural networks, the multi-layer perceptron utilises the parallel structure of data processing. Training of the network is performed by means of processing of input data (examples). Successive passes of series of data through the multi-layer perceptron result in adjustment of weights of particular connections and threshold values of the neurone, in such a way, that differences between the results of work of the network (the real estate value) and the expected result (the real estate price) are minimised.

Not every multi-layer perceptron. i.e. the perceptron of an arbitrary number of neurones (including hidden neurones) may achieve the result satisfactory for the ANN user. The appropriate network architecture should be selected. Searching for the appropriate network is

performed through teaching and testing successive variants. In order to accelerate the process, some routines, which simulate operations performed by the multi-layer perceptron, allow to automate it by means of utilisation of an automated designer, which controls networks of various numbers of neurones, in order to find the best network. The best network is usually considered such a network, which is characterised by the lowest value of the validation error.

If the user designs the multi-layer perceptron independently, the number of hidden layers, and then, the number of neurones in particular layers must be selected and then the training of the network must be performed. This procedure has been applied in reported investigations.

One of the most important components of the process of designing the multi-layer perceptron is the decision concerning the number of hidden layers and the number of neurones hidden in each layer. Their number depends on the level of complexity of the task which is to be solved by neural networks. If the number of neurone is too high, this may result in the network "over-training"; in turn, if their number is too small, the network will recognise properties existing in the data set with insufficient accuracy. The total number of neurones should several times exceed the number of weights in the network. In the case of valuation, the number of neurones in the input layer may be limited by means of appropriate selection of properties of real estates.

Similarly to other neural networks, training of the multi-layer perceptron consists of three stages: the stage of teaching, the stage of testing and the stage of analysis of results. It requires that the file with examples is divided into at least 2 subsets: the teaching subset and the testing subset. Each of distinguished subsets should contain examples which are representative for the entire dataset.

In the stage of teaching the network is taught using the teaching subset. The network recognises general relations which occur in the dataset. In the process of teaching the network, the, so-called, teaching algorithms are used. Several teaching algorithms exist for the most popular ANN architecture, the multi-layer perceptron, such as: the method of back propagation of errors, the conjugate gradient method, the quasi-Newton method and the Levenberg-Marquardt method.

Then, in the stage of testing, operations of the network are tested. Those tests are performed for the validation subset, which contains data, which does not occur in the training subset. This allows to estimate, whether the network was taught the general data structure or was just adjusted to specific values existing in the teaching subset. In the first case the error in the teaching subset is of the same order as the error in the validation subset; in the second case the error in the teaching subset is much smaller than the error in the validation subset. Values of errors in both subsets may be controlled in the process of teaching. When the error in the teaching subset decreases and the error in the validation subset increases, teaching of the network should be terminated, otherwise the network could become "over-trained".

TS 5D - Tools and Methods in Land Valuation Tomasz Budzński Application of Multi-Layer Perception for Mass Valuation of Real Estates

When a lot of examples are available, a separate testing subset may be distinguished from the dataset. The testing subset contains examples, which are not used in the process of teaching and validation. Testing of the network using this testing subset, if the error is small, ensures the user that the network will generate reliable results.

Analysis of results is the final stage of teaching the network. In the case of regression tasks, such as real estate valuation, it covers determination of data for the above subsets, among others:

- the mean error (considered as the modulus of the difference of the required value and the obtained output value) for the output variable (real estate value),
- the quotient of standard deviations for errors and data being the basic factor of the quality of the regression model constructed by the network.

The above training algorithms are described below for the multi-layer perceptron.

# 2.1. Back Propagation of Errors Algorithm

The algorithm of back propagation of errors determines, in the course of teaching, the local value of the gradient versus each weight for every presented case. Weights are modified after presentation of every teaching case.

The method of determination of the signal of error depends on location of the modified neuron. This value is calculated in different way for neurons of the output layer and for neurons of the hidden layers.

The signal value of the error in the output layer is the product of the derivative of the error function of the network and the derivative of the neuron activation function.

Values of the signal of the error for neurons located in hidden layers is equal to the product of the derivative of the neuron activation function and the weighted total of signals of errors determined for neurons of the next layer. In the course of "weighting" of errors, which undergo the process of back propagation (the origin of the name of the discussed method), weights associated with connections leading from the modified neuron to neurons located in the next layer, are applied.

#### 2.2. Conjugate Gradient Descent Algorithm

The conjugate gradient descent algorithm modifies weights in a cumulated way. This means, that weights are modified once in the course of implementation of one epoch, i.e. in different way than in the case of the back propagation method, where modification of weights is performed after every presentation of the successive case, contained by each epoch. In the case of application of the conjugate gradient descent algorithm the mean value of the gradient

for each epoch, for all cases, is determined on the surface of the error; this gradient value is the basis for modification of weights, which is performed in the final stage of each epoch.

In the course of its operations, the conjugate gradient descent algorithm performs the series of linear searching along selected directions on the surface of the error. Initially, it determines the directions of the maximum slope, so it behaves similarly to the algorithm of back propagation of errors. However, instead of making the steps proportional to the teaching factor in specified directions, the step is performed in a well defined manner, after determination of the movement direction, a point is searched for along the selected line (following the determined direction), which corresponds to the minimal error value. Effective implementation of this process is possible, since it requires the relatively short time, as searching is performed only in one dimension, along the selected direction, successive linear searches are performed, one for each epoch. They are performed along lines, which create associated directions with the direction, which has been determined earlier. Those associated directions are determined in a way, which ensures that the minimum values, determined along directions considered in previous steps, are maintained (none of steps of the algorithm cannot deteriorate the previous results).

In the course of determining the associated directions it is assumed that the surface of errors is locally paraboloidal; it means that within surroundings of the point, where the teaching process is located, it is described, with satisfactory accuracy, by a multi-dimensional square function. Usually this assumption is not met in the ideal way; however, solutions obtained under this assumption, concerning the direction where the minimum should be searched for once again, are practically satisfactory. Applicability of the square surface model is controlled in practice; if the algorithm states that the current direction of searching, resulting from the square model and technique of conjugate gradients does not allow to decrease the error value, the new direction of the maximum slope is determined in the given point and the next sequence of searching for the minimum in that direction is started. It should be noticed that as it results from the general properties of the error function surfaces – after achieving the point located close to the real minimum of a multi-dimensional function, its nature is modified in such a way that the assumption concerning the square form of the error surface becomes true. This allows for fast achievement of the point, which is characterized by the lowest error value, in particular, in the final stage of searching - it means, when it is very difficult to perform the simple gradient methods (as the back propagation method).

#### 2.3. Quasi-Newton Algorithm

The quasi-Newton algorithm uses the fact, that the direction to the minimum can be found on the square (parabolic) error function, using the Hesse matrix, i.e. the matrix of partial derivatives of the second order. Sufficiently close to the minimum, each surface of the error may be considered as a square surface. However, since calculation of the Hesse matrix is difficult and time consuming, and steps of Newton may lead to erroneous results on a nonparabolic surface, approximation of the inverse Hesse matrix is created in an iterative process.

TS 5D - Tools and Methods in Land Valuation Tomasz Budzński Application of Multi-Layer Perception for Mass Valuation of Real Estates

In its first step, approximation follows the maximum slope line and later its compatibility with the estimated Hesse matrix becomes higher.

The quasi-Newton algorithm modifies weights as a complex. While in the case of back propagation weights are corrected after every case, in the quasi-Newton algorithm the mean gradient of the error surface is calculated, for all cases, before all weights ware updated at the end of the epoch.

The quasi-Newton algorithm is the most popular algorithm of non-linear optimization and it is considered to be the fast concurrent algorithm. However, it has some disadvantages: its numerical stability is lower than the method of conjugate gradients, it may have the tendency of concurrence to local minima and it requires more memory.

## 2.4. Levenberg-Marquardt Algorithm

Operations of the Levenberg-Marquardt algorithm is based on the assumption, that the real function, which is modelled by the network and which combines input signals with one output signal is of linear nature. This assumptions allows for precise determination of the minimum of the error function, what may be performed in one step, without the necessity to apply any iterations. After determination of the hypothetic minimum of the error function, the algorithm performs its testing. If the error value is lower than the error in the starting point, coordinates of the new point determine the new starting point, and the set of weights, corresponding to that point is considered as the new approximation of optimum parameters of the network, which is being taught. If the assumption concerning the linear nature of the approximated function is not met (it is usually not met, but the high divergence is considered here), then the error in the determined point may be much greater than the error in the starting point. Then the algorithm returns to the starting point and attempts to improve the situation using the technique based on the maximum slope method. This process is repeated in successive epochs. The main advantage of the Levenberg-Marquardt algorithm is the ability to determine new solutions in a way, which is always the compromise between the solution achieved by the highest slope method and the above mentioned algorithm of the hypothetic linear approximation. If the solution achieved by the algorithm of the hypothetic linear approximation led to decrease of the error value, its strengthens the assumptions concerning the linearity. If the hypothesis concerning the linearity did not work, steps, which led to solutions resulting in increase of error values, are rejected and successive attempts to modify the weights according to the hypothetic linear approximation are performed with greater care. During its operations, the algorithm switches between two described approaches, using the hypothetic linear approximation in most possible cases and coming back to the maximum slope method only when the evident failure occurs; this results in high speed of operations performed by this algorithm.

#### **3.** INVESTIGATIONS ON THE ACCURACY OF DETERMINATION OF A REAL ESTATE VALUE USING THE MULTI-LAYER PERCEPTRON, TRAINED BY MEANS OF VARIOUS TEACHING ALGORITHMS

Investigations concerning the accuracy of determination of a real estate value using the multilayer perceptron, trained by means of various teaching algorithms, have been performed basing on the example of the market of non-built-up areas, to be used for one-family houses located in Otwock close to Warsaw.

Data of 114 transactions (land, non-built-up parcels, planned for one-family houses, located in Otwock) performed in the period 2000-2001 were investigated. Prices of 1 sq. m. of lands have been updated for January 2002.

Features, which may influence the land prices in Otwock, were specified. They are: location, neighbourhood, access to public transport, technical infrastructure, state of developing, parcel size, shape of a parcel.

In order to specify features which should be considered in the process of construction of a multi-layer perceptron model, the genetic algorithm and the backward step method were applied independently. The same results were obtained by those methods, i.e. except the feature "shape of a parcel" all other features are useful in the process of creation of the multi-layer perceptron model.

Then, all transactions were divided into the teaching subset -71 cases, the validation subset -29 cases and the testing subset -14 cases. Those subsets have similar statistical characteristics - the mean value 60.00 zł/m<sup>2</sup>, 60.44 zł/m<sup>2</sup> and 59,77 zł/m<sup>2</sup>, respectively, and the standard deviation values: 31.27 zł/m<sup>2</sup>, 33.31 zł/m<sup>2</sup>, 30.35 zł/m<sup>2</sup>, respectively.

Using the Statistica Neural Networks software package multi-layer perceptrons were created with three, four and five hidden neurons, respectively. Each of those multi-layer perceptrons was taught by four teaching algorithms, describe above. For each model of the multi-layer perceptron, taught by one of the mentioned algorithms, 100 neural networks were created. In the phase of experiments the total of 1200 multi-layer perceptrons were created. The constructed models, taught by particular teaching algorithms, were recorded in four, separate files of the network.

Table 1 below presents errors (the root of totals of squares of errors of particular cases, determined by the function of the error of the network) in the teaching subset (the teaching error), the validation subset (the validation error) and in the testing subset (the test error) for the 10 best neural networks out of 100 constructed neural networks, which have 3, 4 and 5 hidden neurons, respectively, and which were taught by the following teaching algorithms: back propagation of errors (BP), conjugate gradients (CG), quasi-Newton (QN) and Levenberg-Marquardt (LM). Besides the type of the teaching algorithm, Table 1 presents the

number of the teaching epoch, in which the given network was characterised by the smallest value of the validation error, i.e. when it was the best. The error in the validation subset for the best network, taught by the given teaching algorithm, is presented in bold.

| Number<br>hidden | Error in teaching<br>file<br>zł/m <sup>2</sup> | Error in<br>validation file<br>zł/m <sup>2</sup> | Error in test<br>file | Network<br>number in a | Teaching<br>algorithm,<br>number of |
|------------------|------------------------------------------------|--------------------------------------------------|-----------------------|------------------------|-------------------------------------|
| neurones         | Z1/M                                           | Z1/M                                             | Zł/m                  | file                   | teaching epoch                      |
| 3                | 9.696718                                       | 10.49435                                         | 11.76747              | 67                     | BP 97                               |
| 3                | 9.988878                                       | 10.57217                                         | 10.97158              | 33                     | BP 99                               |
| 3                | 10.00016                                       | 10.63275                                         | 11.94458              | 24                     | BP 86                               |
| 3                | 10.27986                                       | 10.71907                                         | 11.67362              | 38                     | BP 85                               |
| 3                | 10.08341                                       | 10.79088                                         | 12.40815              | 46                     | BP 97                               |
| 3                | 10.20296                                       | 10.82443                                         | 11.39018              | 87                     | BP 92                               |
| 3                | 9.755157                                       | 10.85956                                         | 11.33153              | 14                     | BP 97                               |
| 3                | 10.19758                                       | 10.92883                                         | 12.62590              | 55                     | BP 89                               |
| 3                | 9.911646                                       | 11.01226                                         | 11.66084              | 97                     | BP 97                               |
| 3                | 9.975479                                       | 11.07343                                         | 11.80595              | 50                     | BP 97                               |
| 4                | 9.643689                                       | 10.59871                                         | 11.31541              | 163                    | BP 99                               |
| 4                | 9.800481                                       | 10.60128                                         | 11.73295              | 138                    | BP 99                               |
| 4                | 10.25254                                       | 10.83268                                         | 11.75028              | 134                    | BP 90                               |
| 4                | 10.14432                                       | 10.85078                                         | 12.12913              | 150                    | BP 95                               |
| 4                | 9.77638                                        | 10.91646                                         | 11.90574              | 185                    | BP 98                               |
| 4                | 9.915918                                       | 10.94451                                         | 11.00020              | 146                    | BP 96                               |
| 4                | 10.05354                                       | 11.15980                                         | 11.38728              | 142                    | BP 96                               |
| 4                | 10.28936                                       | 11.24815                                         | 12.18099              | 181                    | BP 97                               |
| 4                | 10.10934                                       | 11.27656                                         | 11.89238              | 139                    | BP 93                               |
| 4                | 10.15821                                       | 11.28541                                         | 12.07704              | 166                    | BP 98                               |
| 5                | 9.584256                                       | 10.36612                                         | 11.35798              | 242                    | BP 92                               |
| 5                | 9.462977                                       | 10.41314                                         | 10.86535              | 237                    | BP 98                               |
| 5                | 9.76110                                        | 10.44890                                         | 11.36997              | 267                    | BP 99                               |
| 5                | 10.93719                                       | 10.50233                                         | 12.59375              | 249                    | BP 12                               |
| 5                | 9.665446                                       | 10.55590                                         | 10.33745              | 209                    | BP 93                               |
| 5                | 9.958743                                       | 10.63591                                         | 11.85453              | 245                    | BP 90                               |
| 5                | 9.796437                                       | 10.66357                                         | 11.14308              | 244                    | BP 96                               |
| 5                | 10.06525                                       | 10.72067                                         | 12.17929              | 260                    | BP 84                               |
| 5                | 9.686867                                       | 10.76743                                         | 11.61175              | 208                    | BP 97                               |
| 5                | 10.25147                                       | 10.78526                                         | 11.50730              | 277                    | BP 99                               |
| 3                | 8.553579                                       | 9.317702                                         | 9.744248              | 15                     | CG 99                               |

Table.1. Characteristics of selected multi-layer perceptrons.

TS 5D - Tools and Methods in Land Valuation Tomasz Budzński Application of Multi Lawar Percention for Mass Valu

Application of Multi-Layer Perception for Mass Valuation of Real Estates

Integrating Generations FIG Working Week 2008 Stockholm, Sweden, 14-19 June 2008

| Number o | of Error in teaching | Error in          | Error in test     | Network     | Teaching                 |
|----------|----------------------|-------------------|-------------------|-------------|--------------------------|
| hidden   | file                 | validation file   |                   | number in a | algorithm,               |
| neurones | zł/m <sup>2</sup>    | zł/m <sup>2</sup> | zł/m <sup>2</sup> | file        | number of teaching epoch |
| 3        | 9.562352             | 9.360718          | 11.14156          | 28          | CG 61                    |
| 3        | 8.456292             | 9.408476          | 9.856787          | 93          | CG 65                    |
| 3        | 7.918314             | 9.455911          | 9.865039          | 39          | CG 88                    |
| 3        | 8.470978             | 9.518941          | 9.801648          | 1           | CG 99                    |
| 3        | 9.219148             | 9.543596          | 10.68496          | 48          | CG 52                    |
| 3        | 8.628581             | 9.553536          | 9.925418          | 81          | CG 99                    |
| 3        | 8.951097             | 9.559634          | 10.88147          | 37          | CG 70                    |
| 3        | 9.075138             | 9.574868          | 11.15096          | 77          | CG 55                    |
| 3        | 8.699602             | 9.659920          | 12.28238          | 71          | CG 76                    |
| 4        | 8.896472             | 9.180777          | 11.35737          | 184         | CG 96                    |
| 4        | 8.805346             | 9.365056          | 9.458848          | 146         | CG 73                    |
| 4        | 8.836677             | 9.381079          | 10.80636          | 106         | CG 95                    |
| 4        | 9.082006             | 9.554819          | 11.09459          | 152         | CG 89                    |
| 4        | 8.597639             | 9.578359          | 10.32522          | 113         | CG 94                    |
| 4        | 8.472374             | 9.642568          | 9.984596          | 111         | CG 99                    |
| 4        | 8.307498             | 9.650772          | 9.826212          | 147         | CG 79                    |
| 4        | 8.755473             | 9.682064          | 10.45972          | 145         | CG 60                    |
| 4        | 9.337041             | 9.745168          | 10.53199          | 141         | CG 65                    |
| 4        | 8.681951             | 9.791487          | 9.883537          | 107         | CG 83                    |
| 5        | 8.047045             | 9.097722          | 10.67246          | 272         | CG 99                    |
| 5        | 8.425230             | 9.204469          | 10.86818          | 228         | CG 94                    |
| 5        | 8.378257             | 9.225664          | 10.0433           | 274         | CG 86                    |
| 5        | 8.697652             | 9.369480          | 10.24015          | 250         | CG 87                    |
| 5        | 9.372861             | 9.459508          | 10.92464          | 282         | CG 36                    |
| 5        | 7.985135             | 9.472550          | 10.86984          | 270         | CG 90                    |
| 5        | 8.563875             | 9.513753          | 9.634813          | 210         | CG 95                    |
| 5        | 8.743315             | 9.603307          | 11.21027          | 243         | CG 98                    |
| 5        | 8.879027             | 9.712059          | 9.970314          | 208         | CG 90                    |
| 5        | 9.008045             | 9.772772          | 10.31649          | 218         | CG 71                    |
| 3        | 8.577321             | 9.251484          | 10.44241          | 64          | QN 92                    |
| 3        | 8.854031             | 9.414275          | 10.59096          | 67          | QN 69                    |
| 3        | 9.028775             | 9.487705          | 10.86711          | 15          | QN 78                    |
| 3        | 8.875493             | 9.631400          | 10.00006          | 53          | QN 83                    |
| 3        | 8.684761             | 9.654127          | 9.549309          | 16          | QN 86                    |
| 3        | 9.326501             | 9.659567          | 12.54091          | 85          | QN 56                    |
| 3        | 9.379531             | 9.679789          | 11.1352           | 44          | QN 64                    |

TS 5D - Tools and Methods in Land Valuation Tomasz Budzński

Application of Multi-Layer Perception for Mass Valuation of Real Estates

Integrating Generations FIG Working Week 2008 Stockholm, Sweden, 14-19 June 2008 10/13

| Number o | of Error in teaching | Error in        | Error in test     | Network     | Teaching                 |
|----------|----------------------|-----------------|-------------------|-------------|--------------------------|
| hidden   | file                 | validation file |                   | number in a | algorithm,               |
| neurones | zł/m <sup>2</sup>    | $zl/m^2$        | zł/m <sup>2</sup> | file        | number of teaching epoch |
| 3        | 9.055143             | 9.683311        | 12.46885          | 25          | QN 90                    |
| 3        | 9.183319             | 9.690530        | 11.28474          | 83          | QN 58                    |
| 3        | 8.672523             | 9.699506        | 10.91776          | 49          | QN 98                    |
| 4        | 8.996874             | 9.058687        | 10.02242          | 113         | QN 86                    |
| 4        | 9.294679             | 9.168142        | 11.21536          | 189         | QN 62                    |
| 4        | 8.843727             | 9.447860        | 11.13248          | 112         | QN 98                    |
| 4        | 8.922932             | 9.554887        | 11.22612          | 173         | QN 74                    |
| 4        | 8.958952             | 9.652721        | 10.37332          | 152         | QN 56                    |
| 4        | 8.809630             | 9.685871        | 11.74442          | 181         | QN 74                    |
| 4        | 8.981136             | 9.685885        | 10.32785          | 196         | QN 85                    |
| 4        | 9.110983             | 9.750262        | 10.59101          | 138         | QN 72                    |
| 4        | 8.054635             | 9.757134        | 10.12670          | 104         | QN 96                    |
| 4        | 8.729833             | 9.781310        | 10.76395          | 136         | QN 99                    |
| 5        | 8.054216             | 9.437988        | 10.88689          | 254         | QN 80                    |
| 5        | 8.105234             | 9.438128        | 12.02157          | 247         | QN 81                    |
| 5        | 9.282457             | 9.556997        | 10.56921          | 259         | QN 57                    |
| 5        | 8.605539             | 9.633930        | 9.003491          | 251         | QN 78                    |
| 5        | 8.094070             | 9.717563        | 10.25081          | 226         | QN 98                    |
| 5        | 8.700970             | 9.738841        | 12.49768          | 275         | QN 98                    |
| 5        | 9.129708             | 9.763016        | 10.42838          | 277         | QN 55                    |
| 5        | 8.736699             | 9.789002        | 10.24300          | 268         | QN 94                    |
| 5        | 9.236421             | 9.821799        | 11.95663          | 297         | QN 99                    |
| 5        | 9.099674             | 9.841247        | 11.44189          | 208         | QN 72                    |
|          | <b>Z 0 Z 2 4 0 1</b> | 0.020.002       | 11.05050          | 0.1         | 1105                     |
| 3        | 7.973481             | 8.838693        | 11.05852          | 21          | LM 95                    |
| 3        | 7.853191             | 9.096793        | 10.47364          | 50          | LM 66                    |
| 3        | 7.929702             | 9.370268        | 9.804918          | 38          | LM 87                    |
| 3        | 8.113187             | 9.431512        | 9.591531          | 20          | LM 68                    |
| 3        | 7.649477             | 9.435407        | 9.113512          | 41          | LM 97                    |
| 3        | 8.436505             | 9.444197        | 10.21510          | 65          | LM 57                    |
| 3        | 7.698186             | 9.492765        | 10.86492          | 28          | LM 97                    |
| 3        | 7.715733             | 9.617524        | 9.552825          | 46          | LM 67                    |
| 3        | 8.158360             | 9.669183        | 10.04896          | 44          | LM 27                    |
| 3        | 8.191848             | 9.702894        | 9.77632           | 40          | LM 99                    |
| 4        | 7.460221             | 8.534605        | 10.97577          | 170         | LM 94                    |
| 4        | 8.412120             | 8.796665        | 10.95999          | 161         | LM 71                    |
| 4        | 7.825629             | 9.076036        | 11.11574          | 154         | LM 99                    |

TS 5D - Tools and Methods in Land Valuation Tomasz Budzński

Application of Multi-Layer Perception for Mass Valuation of Real Estates

Integrating Generations FIG Working Week 2008 Stockholm, Sweden, 14-19 June 2008 11/13

| Number of<br>hidden<br>neurones |          | validation file |          | number in a file | Teaching<br>algorithm,<br>number of<br>teaching epoch |
|---------------------------------|----------|-----------------|----------|------------------|-------------------------------------------------------|
| 4                               | 7.755382 | 9.099799        | 11.27052 | 118              | LM 56                                                 |
| 4                               | 7.499825 | 9.106124        | 10.54094 | 114              | LM 97                                                 |
| 4                               | 7.661975 | 9.201407        | 9.707891 | 146              | LM 57                                                 |
| 4                               | 8.191708 | 9.285498        | 10.46798 | 134              | LM 97                                                 |
| 4                               | 7.979015 | 9.355980        | 10.15521 | 133              | LM 88                                                 |
| 4                               | 8.294124 | 9.375969        | 10.19638 | 139              | LM 94                                                 |
| 4                               | 7.211140 | 9.411457        | 10.34621 | 169              | LM 87                                                 |
| 5                               | 7.550017 | 8.587820        | 9.388863 | 282              | LM 28                                                 |
| 5                               | 7.307299 | 8.788293        | 10.74277 | 269              | LM 62                                                 |
| 5                               | 7.761809 | 9.011996        | 11.19687 | 228              | LM 83                                                 |
| 5                               | 8.237223 | 9.055224        | 11.94212 | 243              | LM 98                                                 |
| 5                               | 7.888611 | 9.128721        | 11.30042 | 203              | LM 99                                                 |
| 5                               | 8.383007 | 9.210142        | 10.33717 | 219              | LM 55                                                 |
| 5                               | 8.048870 | 9.280541        | 10.09614 | 278              | LM 67                                                 |
| 5                               | 7.859905 | 9.289233        | 10.97187 | 232              | LM 98                                                 |
| 5                               | 7.311426 | 9.307494        | 10.88693 | 271              | LM 96                                                 |
| 5                               | 7.953575 | 9.308376        | 9.673532 | 281              | LM 97                                                 |

## 4. CONCLUSIONS

Out of investigated teaching algorithms, the Levenberg-Marquardt algorithm allows to construct the best multi-layer perceptron, i.e. the perceptron characterised by the smallest value of the error in the validation subset. The conjugate gradient (CG) and the quasi-Newton algorithms allow to achieve lower accuracy of determination of real estate values. The back propagation of errors algorithms (BP) turned to be characterised by the lowest efficiency, comparing to other investigated algorithms. Those conclusions concern the network of architecture of low complexity level, which consist of several input neurons, several hidden neurons and one output neuron, i.e. the networks constructed for the needs of determination of real estate values.

Differences in the intensity of teaching the multi-layer perceptron by means of various teaching algorithms for the network of low architectural complexity using about 100 examples become unimportant.

Increase of the number of hidden neurons in the multi-layer perceptron not always results in decrease of the value of the error of determination of a real estate value. In the case of teaching the neural network using the Levenberg-Marquardt (LM) and the quasi-Newton (QN) algorithm the error in the validation subset for the network with 5 hidden neurons was greater than the same error in the network with four neurons in the hidden layer.

#### **5. REFERENCES**

McCluskey W.J. 1996. Zastosowanie sztucznej inteligencji w wycenie masowej dla potrzeb taksacji nieruchomości. (Utilisation of artificial intelligence for real estate valuation).Wycena nr 5(28). Olsztyn.

Statsoft Polska sp. z o.o. 2000. *podręcznik elektroniczny STATISTICA Neural Networks* (Electronic Manual).

Wilkowski W., Budzyński T. 2006. Application of Artificial Neural Networks for Real Estate Valuation. Shaping the Change XXIII FIG Congress Munich. Germany. October 8-13. 2006

#### **BIOGRAPHICAL NOTE**

Tomasz Budzyński Ph.D.

Born in Warsaw in 1974. Studies of Geodesy and Cartography at the Warsaw University of Technology. Graduated his (M.Sc.) in Geodesy in 1998. Obtained his Ph.D. with a dissertation "Research on an effective method of determination of cadastral value" at the Warsaw University of Technology in 2005. Current position: full-time research worker at the Warsaw University of Technology (Faculty of Geodesy and Cartography). Member of the Polish Society of Surveyors.

#### CONTACTS

Tomasz Budzyński Warsaw University of Technology Plac Politechniki 1 PL 00-661 Warsaw POLAND Tel. (48-22) 625-15-27 (48-22) 234-75-89 Fax: (48-22) 625-15-27 Mobile: +48-603-196-198 E-mail: tbudzynski@o2.pl