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SUMMARY 
 
In the frame of the rectification of Ptolemy’s data in the “Geographike Hyphegesis” it became 
necessary to study in detail the geographic work of Eratosthenes of Kyrene, who has 
introduced, according to Strabon, mathematics and physics into geography.  
It turned out that an answer to four questions are of major importance to understand 
Eratosthenes’ work as a natural scientist as well as the ancient development of the natural 
sciences, of geodesy, astronomy and geography: 
 
1. What definition 1 stade = 600 foot has Eratosthenes used? 
2. What can be said about the ancient use of the trigonometric functions? 
3. What kind of map design has Eratosthenes used? 
4. What was the ancient fate of the heliocentric hypothesis? 
 
An answer to the first three questions is given in this treatise. 



On the Geographic Methods of Eratosthenes of Kyrene 
 

Dieter LELGEMANN, Germany 
 
 
1 INTRODUCTION 
 
Most enigmatic and therefore fascinating is the role Eratosthenes of Kyrene has played in the 
development of the ancient natural sciences, of geodesy, astronomy and geography. Four 
questions have to be answered in this respect. 
 
1. A professional construct of a map for the Oikumene using the survey distance data of 
bematists/navigators required a careful determination of the circumference of the Earth as 
determined by Eratosthenes to be 252000 stades.  
What definition 1 stade = 600 foot has Eratosthenes used? 
2. The Thales-triangle, a rectangular triangle in a half-circle with diameter d=1, provides 
a geometric definition of all trigonometric functions.  
What can be said about the ancient use of the trigonometric functions? 
3. Eratosthenes mainly established his map of the Oikumene, very famous in ancient 
times, in the east from the survey data of the Makedonian army of Alexandros the Great 
(delivered to Alexandria by Patrokles), in the west from the data of Timosthenes and Pytheas.  
What kind of map design has Eratosthenes used e.g. to check those survey data for gross 
errors and inconsistencies? 
4. The heliocentric hypothesis of the planetary system was developed already in 
antiquity by Aristarchos of Samos, a predecessor of Eratosthenes in Alexandria.  
What was the ancient fate of the heliocentric hypothesis? 
On the one hand for all those four questions a definite answer could not be given until today. 
On the other hand without an answer to those questions any modern ideas about the 
development of the natural sciences in antiquity will remain questionable and therefore just 
ideas.  
 
A definite answer to the first question is given by the research in the last two decades 
concerning the metric length of the about 40 ancient cubit/ foot-units as provided by 
archaeological evidence as well as by two literary statements.  
 
Heron tells us that the Egyptian schoinos was divided into 30 stades I, Pliny tells us that the 
schoinos was divided into 32 stades II as well as 40 stades III, the last one used by 
Eratosthenes. According to this ancient information we get the condition equation: 
1 schoinos = 30 stades I = 32 stades II = 40 stades III. 
 
By taking into account all ancient foot-units known from archaeological evidence there is just 
one and only one solution left, namely 
1 schoinos = 12000 pechys histonikos (Eg. royal cubit) = 12000 ⋅ 0.5291m = 6349m 
1 stade I = 600 pous Ptolemaikos  = 600 ⋅ 0.3527m  = 211.6m 
1 stade II = 600 pous Philetairikos  = 600 ⋅ 0.3307m  = 198.4m 
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1 stade III = 600 Gudea foot   = 600 ⋅ 0.26455m  = 158.73m 
According to this condition equation no question is left anymore what kind of stade definition 
Eratosthenes has used to provide the  
circumference of the Earth = 252000 stade Eratosthenes = 40000km 
and consequently the  
diameter of the Earth = 252000/π  = 80200 stade Eratosthenes = 12730km. 
How could Erathostenes achieve such an excellent result? About the method used by his 
predecessor to determine the circumference of the Earth provides Ptolemy the necessary 
information in book I.5 of the Geographike Hyphegesis (Knobloch et. al. 2003). 
 
Astronomical methods were required in antiquity as well as in our time for time 
determination, navigation and geography; all three subjects are of high practical 
importance for military and governmental purposes, today as well as in the ancient empires. 
 
Indeed, at the life time of Eratosthenes a new calendar was introduced in Egypt; by 
introducing a leap-day every four years the length of the year was fixed to 365.25 days. Later 
on Julius Caesar took over this calendaric concept for the Roman empire. 
 
The use of astronomic methods for navigation and geography is closely connected to the 
questions 2 and 3. In the sequel an attempt is made to provide an answer to those questions 
taking into account the very sparse literary information about those subjects with due care. 
 
Last but not least a reader amazed about the high accuracy Eratosthenes had already obtained 
for his estimation of the circumference of the Earth should be much more amazed about the 
accuracy of his estimation of the “Astronomical Unit”, that is the distance between the Earth 
and the sun. According to a careful investigation of the literary information handed down to 
us (Kleineberg 2008) it was the value 
 
1 AU = 804 000 000 stade = 10 050 Earth diameter = 128 million km ~ 150 million km. 
And, taking into account the angular diameter of the sun as observed e.g. by Archimedes of 
Syracuse, he got in addition 
 
diameter of the sun = 4 000 000 stade = 100 diameter of the Earth. 
Could it be that the huge sun rotates once a day around the tiny Earth? Hard to belive. 
According to his careful estimation of the “Astronomical Unit” Eratosthenes may have been 
called “Beta” in Alexandria, the second adherent of the heliocentric hypothesis of Aristarchos 
of Samos. The ancient fate of the heliocentric hypothesis is certainly a question requiring 
further research; an answer will be given in another paper. 
 
A last remark may be opportune. The modern literature is full of funny ideas about the state of 
the natural sciences in antiquity. Those funny ideas can only come up if somebody does not 
study very carefully the ancient methods to get precise measurement data as well as the 
ancient mathematical methods to use those measurement data for the problems of the natural 
sciences. 
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2 GONIOMETRY AND TRIGONOMETRIC FUNCTIONS IN ANTIQUITY 
 
As all ancient authors agree upon Greek mathematics started with Thales of Milet  
(~625 – 547 bc) and his younger colleague Anaximander. It have indeed been very practical 
problems both scientists were interested in and which required the development of new 
mathematical methods obviously unknown in Egypt and Babylonia.  
 
“Surveys through the air” were introduced by them, requiring the definition of directions and 
the measurement of angles to determine e.g.  

− the length of the seasons, 
− the height of the pyramids and obelisks, 
− the distance of an island or a ship far off-shore in the sea etc. 

 
In the last case striking must have been for both that a ship/ island very far away in the sea 
could only be seen if those measurements were performed at a hill instead at the shore. Since 
this takes place in all directions just one reasonable answer was left: the ocean surface must 
form a sphere. 
 
Indeed, according to old reports noted down by Diogenes Laertios (2./ 3. cent. AD) 
Anaximander has talked about a spherical Earth in the middle of the universe and not about a 
cylindrical one as some have believed. 
 
According to Eratosthenes Anaximander was the first one who had established a map of the 
Oikumene. If he has mapped for this purpose in a first step the meridians on a cylinder and 
then the cylinder into a plane the strange idea could easily have been arised that he considered 
the Earth to be a cylindrical body as other reports tell us.  
 
In any case, as we know again from Eratosthenes, Eudoxos of Knidos (~408 – 355 bc) also 
drew a map of the Oikumene and at his time it was generally accepted that the Earth forms a 
sphere. The mapping of the surface of a sphere into a plane appropriate for geographic 
purposes was certainly one problem the Greek mathematicians have been confronted with at 
least since Eudoxos.  
 
Already Anaximander used a scientific sunclock, a so-called Horologion or Skiotherikos 
Gnomon/ Skiotheron (shadow intercepting gnomon; see Lelgemann et. al. 2005) to observe 
e.g. the length of the seasons as well as the true local solar time, called very early by the 
Greeks “horai isemerinai”.  
 
Introducing directions and angles for measurement purposes one needs reference directions as 
well as angular units. Regarding the first task the Greeks aligned the horizontal circle to the 
south direction of the meridian; for geodetic purposes the main problem was then how to 
realise the meridian direction in situ in the field.  
 
Furthermore, they divided the horizontal circle into 2 6 12⋅ =  parts; any of those 12 main 
horizontal directions got the name of a wind. 
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Starting from the basic unit 
360 /12 30α = ° = ° = zodiacal signs 

bisection leads to 
15α βαϑμοι= ° =  (steps) or εχτημοριοι  (sixths (of 90°)) 

1
27α μεροι= ° =  (parts) 

 
Trisecting the last unit one gets the ancient “angular cubit” to 30 daktylos, still used (beside 
the degree unit) by Hipparch to describe geographical latitudes in the northern part of the 
Black Sea (Jones 1949, p.283): 

1
22 1 30cubit daktylosα = ° = =  

5 ' 1daktylosα = =  (finger width). 

α  
β  

notch 

gnomon 
bead 

x=tanα  

y=cot β  
bead 

r=1 

 
 
Fig 1: A so-called shadow-square (Horologion) 
 
How can it be explained that the Greeks used the same name for length - as well as for 
angular - units? Was it because of their measurement technique to get angles? 
Of course, a very precise division of an actual solid circle for measurement purposes is not 
easy and required e.g. trisection of an angle; much easier is a precise division of a solid ruler. 
Both can be used to measure angles (see fig. 1), but the ruler (in form of a gnomon as defined 
by Aristoteles) only by an application of trigonometric functions, namely the tangens 
function. 
 
On the other hand all trigonometric functions are graphically defined very simply by a Thales-
triangle (see fig. 2). 
 
With a few exceptions ( , , sin 0 cos90 tan 0 cot 90 0° = ° = ° = ° = cos 0 sin 90 tan 45 cot 45 1° = ° = ° = ° =
sin 30 cos 60 1 2° = ° = ) all trigonometric functions are irrational numbers. The Greek did not 
consider irrational numbers as numbers at all; just integer and rational numbers have been 
used by them in arithmetics. 
HS 2 - Session 2 
Dieter Lelgemann 
The Geographic Methods of Eratosthenes of Kyrene 
 
Integrating the Generations 
FIG Working Week 2008 
Stockholm, Sweden 14-19 June 2008 

5/22



 
Irrational numbers have probably been treated in books about logistic as well as interpolation 
methods between a series of data. There have been ancient books about logistic, but 
unfortunately none has been handed down to us.  
 
Natural scientists such as Archimedes of Syracuse confined irrational numbers like π  or the 
angular diameter of the sun δ by two limits defined by rational numbers, e.g. 

10 10
71 70

90 90
200 164

~3.14085 3 3 ~ 3.14286

27 ' ~ 33'

π

δ° °

< <

= < <
 

 
The loss of ancient books about logistic seem to be the reason why our knowledge obtained 
from the ancient literature about the use of trigonometric functions by the Greeks, very 
important for the natural sciences such as geography, is extremely sparse and an open 
question until today. 
 

x 

tanα  

b 

y 

a 

cotα  

cosα  sinα  

α  α  

α  

d=1 
 

Fig 2: Thales-triangle and the trigonometric functions 
 
Of course, all basic relations between trigonometric functions can immediately be recognised 
at the Thales-triangle, for example 

2 2sin cos 1,
tan :1 sin : cos ,
cot :1 cos : sin ,

tan cot 1,

α α
α α α
α α α

α α

+ =
=
=
⋅ =

 

Moreover, one can immediately set up the important double proportion (see fig. 2) 
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 cos cot
sin

a x y
x y b

α α
α

= = = = . 

According to Eratosthenes it was Hippokrates of Chios, a contemporary of Platon (429 – 348 
bc), who has found out that a solution for this double proportion must be sought in order to 
double the volume of a cube . One of the many ancient solutions for this problem, 
attributed to Platon, used a (mobile) construct as shown by fig. 2. 

2 2a b= 3

 
A main step in goniometry was the invention of an ingenious curve by the sophist Hippias of 
Elis, a contemporary of Sokrates, later on called “quadratix”. Using Cartesian coordinates this 
curve can be described by 

(1 / 90 ) tanx a y xα α= − ° ° = . 
 

45° 

a tanϕ

75° 60° 

30° 

15° 

a 

ϕ  

“quadratix” 

 2a
π

 

 
 
Fig 3:The „quadratix“ of Hipparch of Elis: a graphic table for the tangens-function 
For 90α = ° one gets x=0 and 2lim 0 tan 0y

a α π= ⋅ = ⋅∞ = ; this limit could therefore be used for 
the quadrature of a circle as the Geeks have already recognised. 
 
Bisecting the three zodiacal signs ( 3 30 90⋅ ° = ° ) several times the “quadratix” can be 
established easily by a geometric construction (see fig. 3) 
 

a=7,5 α  15° 30° 45° 60° 75° 90° 
 x 6 1/4 5 3 3/4 2 1/2 1 1/4 0 
 y 1.67 2.89 3 3/4 4.33 4.67 (2 / )a π =4.77 

Table 1: Cartesian coordinates of the „quadratix“ 
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Having constructed the curve one can proceed as follows. Given an angle α , one computes 
first x, takes y from the curve and gets tan ( / )x yα = . Given tanα , one takes y from the curve, 
computes x from / tany α  and gets α  from 90(1 ( / ))xα α= − . With other words the “quadratix” 
represents a geometric construct for a table of tangens-functions. 
 
At the time of Archimedes and Aristarchos, trigonometric functions such as sinα and 
tanα have been a well-known concept for the Greeks. For example, both scientists used 
without any explaining comment for the reader the inequality (see Neugebauer 1975, p.772) 
sin tan ,
sin tan

α α α α β
β β β
< < <  

where α  and β  are given in radian: ( )/180rα α π= ° ° . 
 
Goniometry was certainly advanced further by Archimedes (see appendix). Biruni has 
preserved a “Lemma of Archimedes” (see Neugebauer 1975, p.776), extremely useful to 
derive geometrically goniometric formulas 
sin( ) sin cos cos sin
sin( ) sin cos cos sin

α β α β α β
α β α β α β
+ = +
− = −

 

Moreover, Archimedes derived also the goniometric relation . 2sin ( / 2) (1 cos ) / 2xα = −

 
Eudoxos (as probably Anaximander before him) was confronted with the problem how to 
design a map of the Oikumene. As Strabon and later on Ptolemy have told us the most 
obvious solution for this problem was the construction of a concrete sphere (of a diameter  
d=6 cubit~3m; scale α =1:4 million) and draw the map on this sphere, using meridians and 
parallel circles as reference grid. 
 
The distance measurements of the bematists/ navigators had to be separated then into two 
components: a north-south component called by the Roman “cardo” and an east-west 
component called by the Romans “decumanus”. 
 
Of course, using the distance data of the bematists/ navigators to construct such a map on the 
sphere one needs an estimation of the circumference of the Earth. The “mathematicians” at 
the time of Eudoxos had determined already the circumference of the Earth to be 400000 
stade. Unfortunately, there is no information about the definition of the stade those 
mathematicians have used. 
 
At least already Eudoxos of Knidos (if not Anaximander before him) must have recognised 
that the “decumanus” ( )p φ  between two meridians depends on the latitude φ  according to 

( ) cosp φ φ= ΔΛ . 
If ( )d φ  is measured and φ  is given one gets easily the longitude difference  from ΔΛ

( ) / cosp φ φΔΛ = . 
Indeed, we know from Ptolemy that the cosine-function has already been used by older 
geographers. At the end of the “Geographike Hyphegesis”, book I.20 he just remarks without 
any further comment: 
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For in such units as the equator is 115 
 

− the parallel 36° from the equator and drawn to Rhodes is 93 [~115cos36°=93.04] 
− and the parallel 63° and drawn through Thule is 52 [~115cos63°=52.21] 

 
Why have the older geographers used the mysterious factor 115? There are two explanations. 
Later on in astronomy Hipparch used a table of half-chords – in India those tables were called 
“kadarka” – or sine values multiplied by the factor 3438’=57.3°~180°/π . Was 115 just an 
approximation of 360/π =114.6 and the equator measured in units of π =3 1/7? 
On the other hand the number 115 is the basic parameter for an ingenious kind of equidistant 
mapping design of the northern half- sphere, extremely expedient if distance data are used to 
establish a map for the Oikumene. 
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3 ON THE DESIGN OF GEOGRAPHIC MAPS IN ANTIQUITY 
 
Nearly nothing is known about this subject from literature with one exception: the 
Geographike Hyphegesis of Claudius Ptolemy. 
 
Strabon emphasised the use of a concrete globe for a map of the Oikumene using as a 
reference grid meridians and parallel circles. For a planar map both should be drawn 
rectangular to each other, but he mentioned also the possibility to tilt the meridians.  
 
Indeed, the only professional report about possibilities for a geographic map design is the 
report given by Ptolemy (see Berggren and Jones 2000). Since his report is somewhat 
confusing (having therefore led to funny modern interpretations) the information given in this 
section should be considered as comments from a modern expert for geographic map design.  
Ptolemy remarks (similar as Strabon): 
 
This undertaking [to drew a map of the Oikumene] can take two forms. 
 

− The first sets out the Oikumene on a part of a spherical surface 
− and the second on a plane. 

 
Each of the two approaches is characterised in the following way. 
 
Making the map on the globe one gets directly the likeness of the earth’s shape, and it does 
not call for any additional device to achieve this effect; but it does not conveniently allow a 
size capable of containing most of the things that have to be inscribed on it. 
 
Drawing the map on a plane eliminates these [difficulties] completely; but it does require 
some [special] method to achieve a resemblance to a picture of a globe such, that on the 
flattened surface, too, the intervals [cardo/ decumanus] established on it will be in as good 
proportion as possible to the true [ones]. 
 
With other words, an equidistant design for the planar map is required. Let us see how 
Ptolemy did achieve this in section 24: Method of making a map of the Oikumene in the plane 
in proper proportionality with its configuration on the globe. 
 
The basic concept of the mapping design (it is not a projection onto a cone such as the 
stereographic projection onto a tangential plane) described in the Geographike Hyphegesis 
can easily be grasped from fig. 4. 
 
One draws the parallels as circles around a point A and straight lines through A such that the 
circular distance for ΔΛ  at the equator circle have the same scale as the distance for ΔΦ  at the 
central meridian. The distance R of the point A from the equator can be arbitrarily chosen. 
 
We may choose R according to the condition that at the parallel through Thule at  the 63TΦ = °
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scale is preserved, too. Since we have cossp = ΔΛ Φ  at the sphere and (1 / )pp R= ΔΛ −Φ  at the 
plane we get for R as a condition equation cos 1 /T T RΦ = −Φ  or 
 . /(1 cos )T TR = Φ − Φ

For a few values of  the corresponding distances R are given in table 2. TΦ
Φ  in degrees 63° 63°15’ 63°25’ 
R 115.4 115.0 114.8 

 
Table 2: R for various degrees of  TΦ

 

 
 
Fig 4: Western part of the reference meridian: (nearly) equidistant map design 
 
Regarding the meridians at the remaining latitudes Φ  one gets as differences pδ  between 

 at the sphere and cossp = ΔΛ Φ (1 / )pp R= ΔΛ −Φ  at the plane 
 (cos (1 / )) (cos / 1) ( /115)(115cos (115 ))s pp p p R Rδ = − = ΔΛ Φ − −Φ = ΔΛ Φ +Φ − = ΔΛ Φ − −Φ . 
 
For =60° the correction terms ΔΛ pδ  are listed in table 3. Using those reduction terms the 
meridian curve (solid line) can easily be drawn as done in fig. 4 for the meridian =60° as ΔΛ
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an example. 
 

Φ  0 10 20 30 31.5 40 50 60 63 70 80 90 
pδ  0 4.3 6.8 7.6 7.6 6.8 4.7 1.3 0.1 -3.0 -7.8 -13.0 

Table 3: Correction terms pδ  for the meridian ΔΛ =60°  
 
Of course, an exact equidistant mapping of the sphere into the plane is impossible. But in the 
ancient map design equidistancy is preserved 
 

− along all parallel circles (decumanus) 
− and along the straight lines forming the reference for the curved meridian lines 

(cardo). 
 
Indeed, this is the most expedient kind of mapping design if precise bematists/ navigator-data 
should be checked for gross-errors and inconsistencies. 
The mapping design as described so far is usually called in modern times “Ptolemy’s second 
projection”.  
 
In contrast to what Ptolemy says at the end of his description it is of course possible to draw 
the map using just a revolving ruler and a circle for the equator. If for a location Φ and ΔΛ  to 
the reference meridian are given one simply has to direct the ruler to a point pδΔΛ+  at the 
equator circle. Did Ptolemy have grasped this? Hard to believe. 
 
Ptolemy introduced also a “first projection”, trying to avoid curved meridians. In book I.21 he 
had stated before: 
 
For this reason it would be well to keep the lines representing the meridians straight, but 
those that represent the parallels as circular segments about one and the same centre, from 
which one will have to draw the meridian lines.  
 
Since it is impossible to preserve for all the parallels their proportionality on the sphere, it 
would be adequate 
 

− to keep this for the parallel through Thule and the equator 
− and to devise the parallel that is to be drawn through Rhodes in proportion to the 

meridian as Marinos does, that is in the approximate ratio of  similar arc of 5:4 
[=1.2~1/cos36°] 

 
Obviously guided by a similar proceeding of Marinos Ptolemy simply fixed the straight lines 
for the longitudes at the parallel-circle of Rhodes instead at the equator (as shown in the 
figure by the line    ). Did he really understand that he changed then at the same 
time the scale at the parallel of Thule and at the equator by n=cos36°/(1-36/115)=1.2? Again 
hard to believe according to what he wrote in I.21. 
 
The modern assumption that Ptolemy has invented in particular the second map design is just 
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a modern idea; there is not any information to support it. It must have been indeed a very 
qualified mathematician, such as Eudoxos or Eratosthenes, who has invented such an 
ingenious mapping design and Ptolemy may have found a description of it in the library of 
Alexandria. His own description of this simple and ingenious method, nevertheless, can only 
be judged as fussy from an expert point of view. Indeed, it may even support the assumption 
that Ptolemy never has drawn a geographic map at all (see Berggren and Jones 2000, p.46, for 
a further discussion about this question). 
 
4 SOME REMARKS ABOUT ERATOSTHENES’ MAP OF THE OIKUMENE 
 
Very famous in ancient times was the map of Eratosthenes for the Oikumene. Since Ptolemy 
does not say anything about the work of his famous predecessor in Alexandria (he does not 
even mention his name in the Geographike Hyphegesis) our only source of information about 
this work is Strabo. In order to reconstruct at least the main features of the map of 
Eratosthenes one faces several difficulties. 
 
a) As becomes obvious from their critical comments about it neither Strabo nor Hipparch 
have ever seen the map of Eratosthenes.  
b) Strabo mention that he has “corrected” specifications of Eratosthenes without to 
mention it in case those seemed to him obviously wrong (section 4.1). 
c) The question must be answered how Eratosthenes has defined his reference meridian 
through the Canobic mouth of the Nil (section 4.2) 
d) The question must be answered how Eratosthenes has defined the difference between 
two meridians (section 4.3). 
 
4.1 Latitudes according to Eratosthenes 
 
The reader may keep in mind that the Greeks, beside the determination of the Cardo, had 
three methods to measure geographic latitudes by pure astronomical observations. 
 
1. For  observation of that day when the sun was in the zenith, determining the 
declination=latitude from the ecliptical longitudes of the sun (Philo-method). 

24Φ < °

2. Observation of the zenith distance z of the sun with a Skiotherikos Gnomon getting 
z δΦ = +  (Pytheas method). 

3. Observation of the length of the longest day at the summer solstitium (Hipparch-
method). 
 
Whereas the first two methods may provide the latitude Φ with an accuracy of about 5’-10’, 
the third method will provide (without certain corrections unknown to the Greeks) a value 
about 2° too large. 
 
Since Strabo was obviously sure that Pytheas had placed Thule under a latitude of about 

=90°-24°50’=66°10’ (modern arctic circle) it seems to be that he had “corrected” (without 
to mention this) Eratosthenes’ latitude data north of Rhodes in order to agree with that 
assumption (Jones 1949, p.233). Substantiated modifications for the data at the northern limit 

Φ
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of Taurus range and north of it are given therefore in table 4, too. 
 
The modifications are based on the following information: 
 
1. For the latitude differences between Rhodes/ Lysimachia lying at the southern/ 
northern border of the Taurus range the ancient value ΔΦ =3000 stades for the Taurus width 
was used. 
2. For the latitude difference between Lysimachia/ Byzantium the modern value of 
ϕΔ =27’=300 stades has been used. 

3. For the latitude difference between Byzantium/ Borysthenes the ancient value 
=3800 stades provided by Hipparch was used. ΔΦ

4. For the latitude difference between Borysthenes/ Thule the ancient value =11500 
stades provided by Eratosthenes has been used. 

ΔΦ

The latitude value =63° for Thule, introduced by Marinos/ Ptolemy without any further 
comment as northern border of the Oikumene, agrees nearly exactly with the (modified) value 
given by Eratosthenes for this northern most point . 

Φ
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location modern Strabon modification δϕ −Φ  
 ϕ  Φ  (stades) Φ  Φ  (stades) Φ   

Meroe/ Bagrawia 17° 00’ 11800 16° 24‘   +10’ 
Syene/ Aswan 24° 05‘ 16800 24° 00‘   +5’ 
Alexandria 31° 15‘ 21800 31° 10‘   +5’ 
Rhodes 36° 25‘ (25550) 36° 30‘   -5’ 
Athens 38° 00‘ (26800) 38° 15‘   -15’ 
Hellespont/ Lysimachia 40° 35‘ 29900 42° 45‘ 28550 40° 45’ -10’ 
Byzantium/ Istanbul 41° 02‘ - - 28850 41° 13’ -10’ 
Borystenes/ Ochakov 46° 35‘ 34900 49° 50‘ 32650 46° 40’ -5’ 
Thule/ Isl. Smola 63° 25‘ 46400 66° 15‘ 44150 63° 05’ -20’ 

Table 4: Latitude data according to Eratosthenes 
 
4.2 The reference meridian by Eratosthenes 
 
According to Strabon Eratosthenes has chosen the meridian through the Canobic mouth of the 
Nil as reference meridian, running through the two Cyanean islands in the Pontus (Black Sea). 
Where have been those Cyanean islands? Strabo (as well as Ptolemy) located those at the 
outlet of the Bosporus into the Pontus, but one can not find any island there. According to 
Hipparch, on the other hand (Jones 1949, p.351), the Cyanean islands have been 5600 stades 
distant to the west from Phasis (Poti in Georgia) and there are indeed islands, namely the 
Kefken Adasi (s=11° 25’ cos41.5° ⋅ 700= 6000 stades). 
 
Strabo reports also that this meridian runs through the Chalidonia islands near the Gelidonya 
Burun. 
 
Moreover, Eratosthenes has said that the distance between the reference meridian and the 
meridian of Thapsakus at the Euphrat is 6300 stades. A preliminary rectification of Ptolemy’s 
data in the Geographike Hyphegesis has shown that Thapsakus has to be identified with the 
modern town As Sabkhah near Nicephorium (Ar Raqqah). The longitude difference between 
Rashid in Egypt and As Sabkhah in Syria is indeed λΔ =8°52’=6200 stades Eratosthenes. 
 
Strabon Modern name ϕ  λ  
Canobic mouth At Rashid 31° 25’ 30° 25’ 
Chelidonia isl. At Gelidonya Burun 36° 14’ 30° 25’ 
Cyanean isl. Kefken Adasi 41° 14’ 30° 15’ 
Phasis Poti 42° 09’ 41° 40’ 
Thapsakus As Sabkhah 35° 48’ 39° 17’ 
Table 5: Location at the reference meridian of Eratosthenes 
 
4.3 Longitudes according to Eratosthenes 
 
The reader may keep in mind that a precise determination of longitude differences by pure 
astronomical methods requires in situ the knowledge of the precise local solar time at the 
reference meridian, provided today by a chronometer. In antiquity only the measurement of 
the decumanus by bematists/ navigators could be used to determine longitude differences ΔΛ . 
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Strabo complained that the longitude data provided by Eratosthenes have been completely 
wrong in particular for the part of the Oikumene north of the Taurus range and for the east-
west distance between the Canobus mouth of the Nile and Carthage. He as well as Hipparch 
have obviously not realised that the length data provided by Eratosthenes have been longitude 
differences measured at the equator, as can easily be seen by the comparison with modern 
data in table 6. 
 
Indeed, Eratosthenes data agree very well with the longitude differences of those main 
locations along the southern border of the Taurus range with the exception Carthage/ 
Gibraltar.  
 
But one can not exclude an explanation that Eratosthenes has provided for this special case 
also the parallel distance at the southern limit of the Taurus range and Strabo has reported this 
value. Regarding the proportion 5:4=1.2 the longitude difference will be =10000 as used 
in the table. 

ΔΛ

 
It is remarkable how careful Eratosthenes had determined the longitude extension of the 
Oikumene. For an analysis of the other data provided by Eratosthenes one has to wait for a 
rectification of Ptolemy’s data in the Geographike Hyphegesis. 
 

Strabo Modern location ϕ  λ  λΔ  Eratosthenes 
Mouth of the 
Indus 

at Mt. Daspar 36° 35’ 73° 24’    

    21° 16’ 14900 14000 
Caspian gate at Qolleh-ye 

Damavand 
35° 56’ 52° 08’    

    12° 51’ 9000 10000 
Thapsakus As Sabkhah 35° 48’ 39° 17’    
    6° 59’ 4900 5000 
Peluric mouth at Port Said - 32° 18’    
    1° 53’ 1300 1300 
Kanobic mouth at Rashiel - 30° 25’    
    20° 09’ 14100 13500 
Karchedon Carthage 36° 54’ 10° 16’    
    15° 37’ 10900 (10000) 
Pillars of 
Herakles 

at Gibraltar 36° 09’ -5° 21’    

    3° 35’ 2500 3000 
Sacred 
promontory 

at Sagres 37° 01’ -8° 56’    

Table 6: Longitude data provided by Eratosthenes 
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5 FINAL REMARKS 
 
In the course of a rectification of the geographic data given in the Geographike Hyphegesis it 
turned out that Ptolemy, without saying this explicitly, has used older information. For 
example, his (wrong) latitudes for Byzantium and Carthage can already be found by Strabo. 
For any professional analysis of the main distortions in Ptolemy’s data set it will therefore be 
necessary to investigate carefully the method as well as results of his predecessors, in 
particular the methods. 
 
The in situ establishment of the east-west direction and with this the meridian direction was 
the fundamental problem for all bematists/ navigators. Sun rise and sun setting happens 
exactly in east-west direction just two times in the year at the equinoctium.  
 
Was it possible to calculate the horizontal angle α  between the exact east-west direction and 
the sun rising at any time by an astronomical method? Could the very careful determination of 
the length of the seasons by Kallippos at about 333bc be used as a tool to solve this problem? 
 

 spring summer fall winter 
Kallippos 94 92 89 90 
Modern data 94.1 92.3 88.7 90.2 

Table 7: Length D of the seasons measured by Kallippos at ~333bc 

Summer solstitium 

l=90° 

l 

equator 
C 

B 

A sun 

ecliptic zenith 

 
δ =24° 

δ  

90β = °−Φ  

north pole 
meridian 

C equator 

Sun at the 
horizontal circle 

δ  
α  

τ  
β  

B 

A 

 
Fig 5: Spherical triangle fort he sun or a star-rise 
 
If one knows for any day of the year the number d of days with respect to the solstitium or 
equinoctium, respectively, the ecliptical longitude l of the sun can easily be obtained by 
simple interpolation to be . ( / ) 90l d DΔ = ⋅ °

 
In a first step one gets then the declination δ of the sun, using ε =24°, from  
 sin sin sin ~ (2 / 5)sinl lδ ε=  
In a second step one can compute the azimuth α  from 
 sin sin / sin(90 )α δ= ° −Φ  
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and the length of the day 2(6 /15)T τ= +  hours from 
 sin tan tanτ δ= Φ . 
 
Let us consider for example a location at the parallel of Rhodes Φ =36°. At the summer 
solstitium the azimuth α  of sunrise will be  
  1sin (sin 24 / sin 54 ) 30 10 ', 90 30 60Naα −= ° ° = ° = − = °

and the length of the day will be 
1 1 2sin (tan 24 tan 36 ) 18.9 , 2(6 1.25) 14Tτ −= ° ° = ° = + =  hour. 

At the winter solstitium the azimuth α  of sunrise will be  
  1sin (sin( 24 ) / sin 54 ) 30 10 ', 90 30 120Naα −= − ° ° = − ° = + = °

and the length of the day will be 
1 1 2sin (tan( 24 ) tan 54 ) 18.9 , 2(6 1.25) 9Tτ −= − ° ° = − ° = − =  hour. 

 
In particular the azimuth of the sun (or of bright stars near the equator) has been of major 
importance for bematists/ navigators, as Eudoxos, Kallippos and Aristoteles certainly have 
recognised. It remains to find out how the Greeks have treated the mathematical aspect of this 
problem before the invention of spherical trigonometry by Menelaos (1. cent. bc), used by 
Ptolemy as well as by us for this purpose. 
 
The applications of mathematics for geodetic/ geographic purposes was certainly, besides the 
introduction of logical concepts in form of proofs, the main motive for the great progress of 
ancient mathematics by the Greeks. This progress will remain unintelligible if this fact will 
not be recognised.  
 
Appendix: Archimedes about goniometric relations 
 
Despite the fact that the Thales-triangle provides a clear graphic definition of the 
trigonometric functions and Archimedes, Aristarchos and Hipparch have used the sine 
function it is a curious modern idea that the concept of half-chords or sine was introduced by 
the Indians. Indeed, the sine-table Ptolemy has given in the Almagest is based on the concept 
of chords but in fact it is a sine-table in the modern sense as the reader may convince himself 
by proving it (see tab. A1). 
 

α ° ½° 1° 1 ½° 2° 2 ½ 
sinα  0.008727 0.017452 0.026177 0.034899 … 
Ptolemy 0p;31,25 0p;02,50 0p;34,14 2p;05,38 … 

Table A1: Chord-table of Ptolemy in the Almagest 
 
The curious modern idea may have come up, because Ptolemy made his astronomical 
computations without need very fussy and lengthy when he used the data of his sine-table. 
But why was the concept of chords introduced at all by the Greeks?  
 
Indeed, the basic concept underlying the derivations of goniometric relations by Archimedes 
is based on the chord-theorem. A chord s in a circle is seen from any points A, B, C etc. at the 
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periphery under the same angle α  (see fig. A1). 

 
Fig A1: Periphery angles α = const of a chord in a circle 
 
Archimedes used this property for a derivation of the addition theorems of the sine-function 
sin( ) sin cos cos sinα β α β α± = ± β  
as shown in the following. 

 
Fig A2a: Basic construction to derive sin( ) sin cos cos sinα β α β α β+ = +  
 
Regarding the three Thales-triangle ABC, ABD and GDC in a circle with diameter d=1 one 
gets BC=sinα , BD=sinβ , CD=sin( )α β+ . 
Furthermore, we get CH=BC cos cos sinα α⋅ = β  and HD=BD cos sin cosβ α β⋅ =  and therefore  
sin( ) sin cos cos sin . . .CD CH HD q e dα β α β α β+ = = + = +  
and for the special case α β=  
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sin(2 ) 2sin cosα α α= . 
To derive the second addition theorem we mirror in Fig. A2.b the triangle BCD at the 
diameter AB getting the triangle BCD  where β β= . We define G according to x BG BC= = . 
Since BG BC=  and β β=  the square must form a kite square with DG CD CD= = . 

 

 C  

FigA2b: Basic construction to derive sin( ) sin cos cos sinα β α β α β− = −  
 
Lemma of Archimedes: If 2arcBC arcBC β= =  and if BH AC⊥  then it must be HD CH CD= + . 
Using sin cosHD α β= , cos sinCH α β=  and (sin )CD α β= −  one gets 
sin( ) sin cos cos sin . . .q e dα β α β α β− = −  
Back to Archimedes goes also the following derivation of the goniometric formula 
sin( / 2) (1 cos ) / 2α = − α , used by Ptolemy in the Almagest (see Neugebauer 1975, p.23). 

 
Fig A3: Basic construct to derive sin( / 2) (1 cos ) / 2α α= −  
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In fig. A3 the point E is chosen such that AD=AE=z; one gets x=BC=CD=CE= sin( / 2)φ . Since 
ECB is an isosceles triangle its altitude at F must divide EB into two equal parts y. 
For the rectangular triangle ACB one gets first 
2 1 1 cosy z α= − = −  or (1 cos ) / 2y α= − . 
From the two rectangular triangles AFB and ACB one gets the proportion  

1
x y

x
=  or 2x y=  or x y= . 

Combining the relations one gets 
sin( / 2) (1 cos ) / 2x yα α= = = − . 
Furthermore, one gets simply 

2 2cos ( / 2) 1 sin ( / 2) 1 (1 cos ) / 2 (1 cos ) / 2α α α= − = − − = + α  
and therefore 
cos( / 2) (1 cos ) / 2α α= + . 
Using / 2α α=  one gets simply 22sin (1 cos 2 )α α= −  or for α α=   
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2 2cos 2 1 2sin cos sin2α α α= − = − α . 
Archimedes had obviously also all goniometric relations for double and half angles at his 
disposal, very important to establish a sine-table. 
 
In order to establish a convenient trigonometric table the trisection of an angle becomes 
necessary. Archimedes could have done this by introducing 2β α=  and, starting with the 
relation 

2 2

2 2

sin 3 sin( 2 )
sin cos 2 cos sin 2
sin (1 2sin ) 2sin cos
sin (1 2sin ) 2sin (1 sin )

α α α
α α α α

α α α α

α α α

= + =
= +

= − +

= − + − α

 

getting 
3sin 3 3sin 4sinα α α= −  

or 
3sin (1/ 3)sin 3 (4 / 3)sinα α α= + . 

For small angles such as e.g. 1 cubitus=2.5° this equation can be solved by a few iterations, 
starting with ( ) 3

0
sin (1/ 3)sinα α= . 

 
Of course, regarding the establishment of a sine-table the use of the smaller cubit  
1 cubitus=24daktylos=2° was much more appropriate. Was this the reason why in Alexandria 
at about 175 bc the angular unit 1 degree=1° was introduced for astronomical purposes 
starting from sin3°?  
 
In any case it would be hard to believe that Archimedes did not inform by correspondence hi 
colleagues in Alexandria about those results very important regarding the practical problems 
in geodesy/ geography as well as astronomy.  
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