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SUMMARY 

In applications like extracting hiking trials from crowd sourced data, collecting trajectories 

describing animal movement or precise mapping of road lines, there are multiple trajectories, 

obtained from e.g. Global Navigation Satellite Systems (GNSS), that describe the same physical 

path. Due to e.g. observation techniques, occasional observational blunders and difficulty in 

identifying exactly the same physical path, individual trajectories will normally differ from one 

another. This paper proposes a method on how to estimate a best fit trajectory based on available 

individual trajectories. The precision of the estimated trajectory is quantified in form of standard 

deviations. Occasional observational blunders and failure in following the same physical path 

are addressed through statistical testing. A priori stochastic information regarding the individual 

trajectories is utilized in a weighting scheme. The proposed method is first verified using a 

simulated dataset. Results from processing of a relatively complex dataset stemming from 

individual runs with a GPS multi-sport watch, point out some advantages and drawbacks of the 

method. The method appears to handle well both observational blunders and changing 

requirements regarding following the very same physical path during data collection. Detection 

and subsequent deletion of erroneous observations might however introduce small jumps along 

the estimated trajectory. Depending on the applications, the effect of occasional small jumps 

can be handled by post smoothing. 
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1. INTRODUCTION 

GNSS (Global Navigation Satellite Systems) like GPS (Global Positioning System) is 

frequently used in kinematic mode to obtain trajectories in the form of temporally ordered 

sequences of geographic coordinates. Depending on factors like hardware, software, 

observation- and processing techniques, satellite geometry and observational errors from e.g. 

atmosphere and multipath (e.g. Teunissen & Montenbruck, 2017) positional accuracies ranging 

from centimeter to several tens of meters can be achieved. 

Precise georeferencing of centerlines of roads is an example where a high accuracy is required 

while an accuracy of a few meters is sufficient for e.g. hiking trials. 

Most users require that quality numbers should accompany the coordinates, e.g. standard 

deviations or Dilution of Precision (DOP).  If a trajectory is measured only once, statistical 

information from the GNSS-processing can supply such quality information. As with nearly all 

measuring techniques however, observational blunders in the form of outliers will occasionally 

lead to erroneous coordinates. An approach to overcome and reduce the effect of outliers is to 

repeat the measurements leading to a redundant set of trajectories. The problem then arises on 

how to estimate an optimal trajectory based on individually measured trajectories as well as 

how to compute corresponding quality numbers. 

Each trajectory will not have identical sampling locations as common tie points are normally 

not available.  Each trajectory is obtained individually and differences regarding start and stop 

of each trajectory, epoch interval, speed and occasionally missing epochs make the estimation 

of an optimal trajectory complicated. 

Existing methods like manual methods, Mean and Median methods (Buchim et al., 2013) and 

Dynamic Time Warping (Vaughan & Gabrys, 2016) have different strengths and weaknesses 

regarding different sampling characteristics. 

The current paper proposes a method based on traditional least squares parameter estimation. 

In a first step temporarily ordered point clouds containing coordinates from each individual 

trajectory are identified. For each point cloud, network adjustments and analyses are carried out 

where outliers are identified using multiple t-testing. Final coordinates are estimated using the 

remaining healthy observed coordinates. Precision numbers are computed in the form of 

covariance matrices or standard deviations. The method could find use in extracting e.g. popular 

hiking trials from crowd sourced data, collecting trajectories describing animal movement or in 

precise mapping av road lines. 

Section 2 gives a very short review of GNSS positioning in kinematic mode highlighting 

different coordinate systems and reference frames as well as stochastic information 

accompanying the coordinates. Section 3 is on the formation of discrete point clouds while 

section 4 gives the theoretical outline of the proposed method. Section 5 presents processing 

results using trajectories from a simulated dataset and section 6 presents results from a more 

complex scenario where individual trajectories have been measured using a GNSS multi-sport 
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device. Discussion and some suggestions for future work are presented in section 7 while 

section 8 contains conclusions. 
 

2. GNSS KINEMATIC POSITIONING   

In the GNSS device or GNSS software, raw observations in the form of distance measurements 

between the GNSS receiver antenna and antennas of GNSS satellites are used to estimate three-

dimensional receiver coordinates (x,y,z) along with nuisance parameters such as e.g. receiver 

clock biases (e.g. Teunissen & Montenbruck, 2017). Estimated receiver coordinates are Earth 

Centered Earth Fixed (ECEF) coordinates given in the reference frame defined by the 

coordinates of satellites and eventual differential reference stations. Using a handheld GPS-

receiver, satellite coordinates are normally obtained from the broadcasted navigation message 

and coordinates are then referred to WGS84.  Broadcasted navigation messages from other 

GNSS-systems such as GLONASS, Galileo and Beidou are using reference frames which are 

nearly identical to ITRF (International Terrestrial Reference Frame), which again is nearly 

identical to WGS84 (e.g. Teunissen & Montenbruck, 2017). 

For most geomatic applications, three-dimensional Cartesian xyz-coordinates in the ECEF 

coordinate system are converted to planimetric coordinates (North, East) and height (e.g. 

Hofmann-Wellenhof et al., 2008). The conversion from xyz-coordinates to North-, East-, 

height-coordinates is a two-step procedure. The first step involves conversion to latitude, 

longitude and ellipsoidal height related to a reference ellipsoid. The last step involves 

conversion from latitude and longitude to Northing and Easting in the mapping plane by 

applying an appropriate mapping projection. Ellipsoidal heights are converted to gravity based 

heights using corrections in the form of e.g. geoid heights obtained from a geoid-model. 

If working with coordinates in a regional reference frame, e.g. the European ETRF89, receiver 

coordinates in the global WGS84 or ITRF should be transformed to the regional reference 

frame. The transformation involves the time difference from the epoch of observation to the 

reference epoch of the regional reference frame as well as spatial differences between the 

reference frames at the corresponding reference epochs (e.g. Nørbech & Plag, 2002). Most 

national mapping agencies supply transformation formulas and software to transform and to 

convert GNSS-coordinates obtained from single point GNSS positioning to the national 

reference frame. 

Along with estimated receiver coordinates, accompanying covariance-matrices are initially 

available from the GNSS processing. The initial 3x3 covariance matrices for Cartesian ECEF-

coordinate can be converted to 3x3 covariance matrices for North-, East- and height coordinates 

using the general law for error propagation (e.g. Ghilani, 2017).  

It should be pointed out that some GNSS devices and software output full three-dimensional 

covariance information, some output standard deviations only (ignoring correlations between 

estimated coordinates) and some do not output any quality measures at all. 

When working with trajectories, the height coordinates are normally ignored as only horizontal 

coordinates are of interest. Covariance matrices accompanying North- and East coordinates are 

then reduced to 2x2-matrices.   
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3. IDENTIFICATION OF DISCRETE POINTS CLOUDS ALONG THE 

TRAJECTORY 

The proposed method is based on the fact that all points along a trajectory have corresponding 

neighbor points in accompanying trajectories. Our criteria for selecting corresponding 

neighbors for a point in one trajectory is based on the minimum Euclidean distance to points in 

the other individual trajectories. Typical sampling interval of a GNSS-device is 1 second.  The 

spatial distance between adjacent points along a trajectory then depends on speed, typically 1.4 

m/s for a pedestrian (Levin & Norenzayan, 1999) and 13.9 m/s for a car travelling at a speed of 

50 km/h. To minimize the effect of sampling rate on the choice of nearest neighbor, the spatial 

density of points along each trajectory can be increased by e.g. linear interpolation. For 

trajectories sampled by a handheld GNSS device with a horizontal accuracy of 5 m (one sigma), 

a spatial distance of e.g. 0.05 m between points along the trajectory will minimize the effect of 

sampling rate on choice of neighbor points. 

Following a densification of each individual trajectory, one trajectory is selected as reference 

trajectory and for each point, a search is carried out to find nearest neighbors in accompanying 

trajectories. 

Denoting the number of individual trajectories m and the spatial distance between points along 

each trajectory d_dist, the clustering algorithm will output a series of point clouds along the 

trajectory. Each point cloud consists of m points and the distances between point clouds are 

approximately d_dist. 

The clustering process might be sensitive to the choice of initial reference trajectory. The search 

for nearest neighbors can therefore be iterated where e.g. weighted mean coordinates of each 

point cloud are used as reference in a re-search for the m closest neighbors. Subsequent re-

clustered point clouds are then used to estimate and validate outliers and to estimate coordinates 

along the final trajectory. 

 

4. ESTIMATION AND VALIDATION 

4.1 Estimation of coordinates and standard deviations 

The suggested approach is based on least squares parameter estimation (e.g. Ghilani, 2017).  

Independent estimation and analysis processes are carried out for each point cloud along the 

trajectory. The number of point clouds is denoted n and the number of points in each point 

cloud is m. Cloud number is also an epoch number and is indicated with subscript i,  i=1,2,…., 

n. We use superscript j to indicate individual points in each point cloud, j=1,2,…., m. Unknown 

parameters for each point cloud are horizontal coordinates Ni and Ei. The coordinates of each 

point in the point cloud, Ni
j and Ei

j are treated as observations and the number of observations 

in one point cloud is thus 2m. The observations are assigned weights using 2x2 covariance 

matrices, Σi
j, accompanying each tuple of observed North- and East coordinates. In the 

functional model, we express the observations as a function of the unknown parameters. 

 

𝑙 +  𝑣 =  𝐴𝑥            (1) 

 

, where vector 𝑙 contains the observations in each point cloud, 𝑣 is vector with residuals, 𝐴 is 

design matrix and 𝑥 is vector with unknown parameters. 

 

Applied to our case, we get 
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Due to lack of information, we ignore temporal correlations between subsequent coordinate 

pairs in the stochastic model. If 2x2 covariance matrices, 𝛴𝑖
𝑗
 , for each pair of individual 

coordinates are available from the GNSS processing, weight matrices for each pair of 

observations are given by 

𝑤𝑖
𝑗
 =  (𝛴𝑖

𝑗
)−1           (3) 

  

The full weight matrix, 𝑊, is then a block diagonal matrix with epoch wise 2x2 matrices wi
j 

along the diagonal. 

 

𝑊 = 

[
 
 
 
𝑤𝑖

1 0 0 0

0 𝑤𝑖
2 0 0 

0 0 . 0
0 0 0 𝑤𝑖

𝑚]
 
 
 

          (4) 

 

The degrees of freedom, being the number of redundant observations, is 𝑟 =  2𝑚 –  2 for each 

point cloud. 

 

Applying the principle of least squares gives us the estimated parameters as 

𝑥 = (𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊𝑙          (5) 

 

The vector with residuals is computed as  

𝑣 = 𝐴𝑥 − 𝑙           (6) 

 

The standard deviation of unit weight is then 

𝑠0 = √
𝑣𝑇𝑊𝑣

𝑟
           (7) 

 

And standard deviations of estimated parameters can be computed as 

𝑠𝑁𝑖
= 𝑠𝑜√𝑞11           (8) 

𝑠𝐸𝑖
= 𝑠𝑜√𝑞22           (9) 

 

Where 𝑞11 and 𝑞22 are respective diagonal elements in the cofactor matrix 𝑄 

 𝑄 = (𝐴𝑇𝑊𝐴)−1          (10) 
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The covariance matrix of estimated coordinates is given by 

𝛴𝑖 = 𝑠0
2 𝑄            (11) 

 

As a measure of goodness of fit, the estimated standard deviation of unit weight, 𝑠0 , can be 

tested against the a priori value, 𝜎0 , using the standard Chi-square test. Normally 𝜎0 = 1 is 

used as a priori value. 

𝜒2 =
𝑣𝑇𝑊𝑣

𝜎0
2            (12) 

 

If the computed 𝜒2  is greater than the tabulated value with 𝑟 degrees of freedom and 

significance level of α (e.g. α=0.05), there is a significant difference between a priori- and 

estimated standard deviation of unit weight. 

 

4.2 Extending the model to include outliers 

Several methods have been developed in an effort to reduce the influence of observational 

blunders. Traditional approaches for geodetic measurements are based on attempts to detect, 

identify and remove outliers (e.g. Baarda, 1968; Pope, 1976) or robust estimation designs to 

mitigate the influence of outliers on the parameter estimates (e.g. Huber, 1981).  

In this work, a relatively simple approach based on multiple t-testing is presented (Pelzer, 1985; 

Asplan Viak, 1994). For each single observation in the point cloud, we estimate an outlier as 

one additional unknown parameter in the model described above.  

The vector with observations, 𝑙,  as well as the weight matrix, 𝑊, remain as above while the 

design matrix 𝐴 is extended with a new column to accommodate the new outlier parameter.  

 

The vector with unknowns is now 

𝑥 =  [

𝑁𝑖

𝐸𝑖

∇𝑖
𝑗
]           (13) 

 

Where ∇𝑖
𝑗
 is the estimated outlier for observation number j in the point cloud. 

  

For the first observation (j=1), 𝐴 is  

𝐴 =  

[
 
 
 
 
 
 
 
1 0 1
0 1 0
1 0 0
0 1 0
. . .
. . .
1 0 0
0 1 0]

 
 
 
 
 
 
 

          (14) 

 

Estimated parameters, residuals and standard deviations are computed as given by eq.5 - eq.7. 

Standard deviation for the estimated outlier is computed with 
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𝑠
∇𝑖

𝑗 = 𝑠𝑜√𝑞33           (15) 

 

Where 𝑞33 is the third diagonal elements in the cofactor matrix 𝑄 (eq. 10). 

For each observation, the number 1 in third column of design matrix 𝐴 is in a sequential manner 

interchangeably moved to each observation to be tested, j=1,2,3,…,2m. A program run is 

carried out for each observation (j), where estimated outliers ∇𝑖
𝑗
 with corresponding standard 

deviations, 𝑠
∇𝑖

𝑗  , are used to compute t-values 

𝑡𝑖
𝑗
= 

|∇𝑖
𝑗
|

𝑠
∇
𝑖
𝑗
           (16) 

 

The t-values are T-distributed with 𝑟 =  2𝑚 − 3 degrees of freedom. As the estimated outlier 

can have both positive and negative signs, this is a two-sided t-test. Furthermore, when testing 

with a total significance level of α (e.g. α = 0.05) the significance level of each individual test 

has to be adjusted due to multiple testing. Assuming independent observations, the significance 

level of each individual test, j, can be computed by 

𝛼𝑗 = 1 − (1 − α)
1

2𝑚⁄          (17) 

 

If the number of observations to be tested is large (e.g. 2𝑚 >   30), a value of 𝛼𝑗 = 0.001 is 

frequently used. 

The outlier estimation and testing approach is a nested iterative process. First the most extreme 

outlier is identified as being the ∇𝑖
𝑗
 associated with the largest computed 𝑡𝑖

𝑗
. This 𝑡𝑖

𝑗
 is then 

checked against the tabulated T-value using 𝑟 degrees of freedom and significance level of  

𝛼𝑗

2⁄ . If the most extreme outlier is significantly different to zero, the associated observed point 

is removed and the whole procedure is repeated for the remaining j=1,2,3,…,(2m-2) 

observations (e.g. Ghilani, 2017). 

The whole procedure is repeated until the most extreme outlier value is not significantly 

different to zero. Final estimates and standard deviations for coordinates are estimated using 

the remaining observations. 

Only the outlier parameter ∇𝑖
𝑗
 and associated standard deviation 𝑠

∇𝑖
𝑗  are required in the search 

for outliers. To speed up the computations in an operational software, the somewhat naive 

approach of estimating the full set of unknowns and standard deviations for every observation 

to be tested can be replaced by an approach based on Cholesky decomposition and back solution 

of an extended system of equations (e.g. Asplan Viak, 1994 ; Leick et al., 2015). 
 

5. SIMULATED TRAJECTORIES 

In this section the proposed method is used to estimate a trajectory based on a simulated dataset. 

A “true” reference trajectory is made up from line-segments connecting 11 control points, see 

figure 1. Distances between adjacent control points are approximately 7 meters. Four simulated 

trajectories are now computed. 
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Figure 1. True trajectory. Approximate distances between adjacent points are 7 meters. 

 

Around each of the 11 control points, coordinates of four randomized points are generated using 

the Matlab “randn-function” (Matlab Release 2018a, 2018). The Matlab “randn-function” 

returns normally distributed random numbers. A standard deviation of 1 m is used in the 

generation of each randomized coordinate, North and East respectively. Line-segments 

connecting individual points in each cluster finalize the four simulated trajectories, see figure 

2.  

 
Figure 2. Four simulated trajectories shown together with the true trajectory. 

 

We now attempt to reconstruct the reference trajectory from the four simulated trajectories. 

Along each simulated trajectory, densified trajectories are generated using linear interpolation. 

Intermediate distances along the four resampled trajectories are 0.05 m. As described in section 

3, the minimum Euclidian distance principle is now used to identify a total of 2213 discrete 

point clouds along the resampled trajectories. The estimation and validation scheme described 

in section 4 is used to estimate a best fit trajectory based on the four simulated trajectories. 

Figure 3 shows the original reference trajectory along with the estimated trajectory from a 

program run where the outlier detection algorithm has not been applied. As seen from figure 3 
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along with figure 2, the estimated trajectory fits the reference trajectory better than each of the 

individual trajectories. 

 
Figure 3. Trajectory estimated without application of outlier detection, shown together with true trajectory. 

 

Figure 4 shows the estimated trajectory stemming from a program run were also the outlier 

detection algorithm was applied. 261 of the total 8852 “observed” coordinate-pairs (2.9 %) 

were detected as outliers and omitted in the estimation of the final estimated coordinates that 

constitute the trajectory. It can be observed that the occasional detection of outliers along the 

estimated trajectory results in small jumps.  

 
Figure 4. Trajectory estimated with application of outlier detection, shown together with true trajectory. 

Occasional small jumps can be seen along the estimated trajectory. 

 

Table 1 presents some details concerning the estimated standard deviations for estimated 

coordinates along the trajectory. 

 
Table 1. Estimated standard deviations in unit of meter from program runs with and without outlier detection. 

Maximum, minimum and mean standard deviations for 2213 pairs of coordinates. 

Type of processing Max 𝒔𝑵 , 𝒔𝑬  Min 𝒔𝑵 , 𝒔𝑬 Mean 𝒔𝑵 , 𝒔𝑬 

Without detection 0.653 0.042 0.303 
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With detection 0.653 0.003 0.289 

 

In this simulated dataset, estimated North- and East coordinates have identical standard 

deviations. As the same random algorithm is used in the simulation of both North- and East 

coordinates, the associated estimated standard deviations have the same magnitude. As 

expected, the minimum and mean of estimated standard deviations are smallest for the program 

run with outlier detection. 

 

6. TRAJECTORIES COLLECTED WITH A GARMIN FORERUNNER 910XT 

MULTI SPORT DEVICE. 

A Garmin Forerunner 910XT Multi Sport device is used to log positions while running a loop 

of approximately 4.7 kilometer, see figure 5. The device operated in the default data recording 

mode of smart recording (Garmin, 2014). In smart recording mode, positions are recorded based 

on a proprietary algorithm for change in direction, speed or hearth rate. The data files are then 

smaller compared to the alternative setting of recording positions every 1 second. Inspecting 

the resulting data files, reveals that the recording interval vary between 1 second and ca. 10 

seconds. With an average pace of approximately 6 minutes per kilometer, there is a recorded 

position approximately every 2.8 – 28 meter. The majority of the recordings are sampled 

approximately every 2-3 seconds / 5.6-8.4 meter respectively. 

 
Figure 5. Plot of eight individual trajectories. Locations mentioned in the description of artifacts a, b, c and d 

are shown with white capital letters. 
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A total of eight runs started and ended at approximately the same location A, see figure 5. The 

eight trajectories are run clockwise and distributed in time over a period of more than one 

year, see table 2. 
Table 2. Date, number of logged positions, number of densified positions and distance for eight different 

trajectories. 

Date (dd.mm.yyyy) 
# logged positions  # densified 

positions 
Distance (meter) 

17.06.2017 428 95744 4787 

30.07.2017 

06.08.2017 

05.09.2017 

08.09.2017 

26.12.2017 

14.06.2018 

25.07.2018 

400 

391 

439 

455 

461 

469 

464 

94354 

92845 

97674 

96256 

95401 

93590 

93944 

4717 

4642 

4884 

4813 

4770 

4679 

4697 

Some artifacts can be seen from figure 5 and are due to: 

a. It is a well-known issue with the Garmin Forerunner 910XT device that the first 

recorded positions occasionally have errors of several tens of meters. The possibility of 

erroneous first positions is higher if the device has not been used for a while. 

b. From the starting point A to approximately point B, the runner chose three different 

paths. Four of the runs started off in a south-west direction, following the road. Two of 

the runs first followed the road in a northern direction from the starting point A before 

turning in a western direction following a foot-path through the forest. Finally two of 

the runs selected a foot-path that goes between the other two initial choices. 

c. From approximately point B to approximately point C, the runs chose slightly different 

paths. Some runs followed the road while the others followed a footpath. The footpath 

runs approximately 10-30 meters to the right of the road. This is in an area with tall 

threes and thick foliage. 

d. In the end of the loop from point D, returning to the approximate start- and end-point 

A, seven of the runs followed the same path. One run did however choose a complete 

different road to the north of the other runs. 

 

In the data processing, the artifacts concerning some of the individual trajectories are not taken 

into concern, and the proposed method is used to estimate coordinates for a best fit trajectory 

along with quality data in the form of estimated standard deviations (eq. 5 and eq. 8-9). 

The recorded data are downloaded from the device and converted to files with coordinates in 

the ETRF89 reference frame using the UTM map projection in zone 32. The Garmin Forerunner 

910XT device does not provide any quality measures of logged positions. Assuming equal 

accuracy for independent North- and East coordinates and an horizontal accuracy of 

approximately 5 meters  (e.g. van Diggelen & Enge, 2015), a priori standard deviations 𝜎𝑁,𝐺𝑁𝑆𝑆 

and 𝜎𝐸,𝐺𝑁𝑆𝑆 are both assigned a value of 3.5 meter. To take into account that different runs 

occasionally follow slightly different paths, e.g. left side of a road on some runs and right side 

of the same road on other runs, the standard deviation designated each observed coordinate is 

augmented with a term that takes offsets between physical paths into account. Assuming that 

errors are random and that GNSS errors are independent from track-offset errors, a priori 
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standard deviations for track-offsets,  𝜎𝑁,𝑇𝑟𝑎𝑐𝑘 and 𝜎𝐸,𝑇𝑟𝑎𝑐𝑘 are used in the propagation of a 

priori final variances: 

𝜎𝑁
2 = 𝜎𝑁,𝐺𝑁𝑆𝑆

2 + 𝜎𝑁,𝑇𝑟𝑎𝑐𝑘
2 ,   𝜎𝐸

2 = 𝜎𝐸,𝐺𝑁𝑆𝑆
2 + 𝜎𝐸,𝑇𝑟𝑎𝑐𝑘

2      (18) 

 

Where 𝜎𝑁
2 and 𝜎𝐸

2 are a priori variances for North- and East coordinates respectively and 

subsequently used in the weighting scheme by populating the 2x2 covariance matrices, 𝛴𝑖
𝑗
, in 

eq. 3. In the present estimation and analysis,𝜎𝑁𝑇𝑟𝑎𝑐𝑘 and 𝜎𝐸,𝑇𝑟𝑎𝑐𝑘 are both assigned values of 2 

meters. 

Each trajectory is first resampled to a distance of 0.05 m between adjacent points. The minimum 

Euclidian distance principle as described in section 3 is then used to identify a total of 94 354 

discrete point clouds along the trajectory before the estimation and validation scheme suggested 

in section 4 is used to estimate the final trajectory. 

A program run without the outlier detection algorithm averages out the effects of the artifacts 

mentioned above and estimated coordinates and trajectory from this approach is not shown 

here. In figure 6, the background orthophoto is removed and shows the estimated coordinates 

from a program run were the outlier detection algorithm is applied. A first glance at figure 6 

reveals two interesting observations: 

- In the beginning of the loop, from the starting point A to approximately point B, there 

is only small segments of estimated coordinates as the outlier detection has rejected 

most of the observed coordinates. Estimated coordinates for the small segments in this 

first part have associated standard deviations of several tens of meters. 

- In the end of the loop, from point D to the start- and end-point A, the estimated trajectory 

follows the main path defined by seven of the runs. The deviated path of the one single 

run is rejected by the outlier detection approach. 
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Figure 6. Plot of estimated trajectory from a program run with outlier detection algorithm applied. The estimated 

trajectory is shown as a thin black line together with the eighth individually observed trajectories. Compared with 

figure 5 the background orthophoto is removed in order to better see poorly estimated segments. Locations 

mentioned in the description of artifacts a, b, c and d are shown with capital letters. 

 

The combined effect of artifacts a, b and c, mentioned above, is that one common trajectory is 

not justified for the start segment from point A to point B and further on to point C. As seen in 

figure 6, the proposed estimation and validation scheme has nevertheless produced short 

segments of a trajectory in this first part. The reason why not all observations have been rejected 

in this part, is that the outlier detection approach has not been able to distinguish between “good 

observations” and “bad observations”. All observations have passed the t-test, but estimated 

coordinates are associated with very high standard deviations. In the final step, a filter based on 

the outcome from the test of estimated standard deviation of unit weight (eq. 12) is therefore 

used to reject poorly estimated coordinates. 

Figure 7 shows the final accepted trajectory with a thin line. Segments filtered out by the Chi-

square test are marked with thicker black dots. 
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Figure 7. Plot of estimated trajectory from a program run with outlier detection algorithm applied. Accepted 

trajectory with a thin line and segments rejected in the Chi-square test with thicker black dots. Locations 

mentioned in the description of artifacts a, b, c and d are shown with capital letters. 

 

Concerning artifact d, the outlier detection algorithm effectively detected that the path selected 

by one run significantly diverges from the path selected by all the other runs. 

Table 3 gives maximum, minimum and mean standard deviations for estimated coordinates for 

accepted and rejected coordinates respectively. In the stochastic model, we have for the current 

dataset assumed that observed North- and East coordinates are independent of one another. 

Since there is no common information between estimated North- and East coordinates in the 

functional model, all standard deviations are then equal for estimated North- and East 

coordinates.  
Table 3. Estimated standard deviations in unit of meter for accepted and rejected coordinates, North- and East-

coordinates respectively. Maximum, minimum and mean standard deviation. 

Solution Max 𝒔𝑵 , 𝒔𝑬  Min 𝒔𝑵 , 𝒔𝑬 Mean 𝒔𝑵 , 𝒔𝑬 

Accepted coordinates   2.07 0.13   0.77 

Rejected coordinates 21.33 2.07 21.33 

 

Figure 8 shows cumulative distribution plots of standard deviations for accepted and for 

rejected coordinates. For the accepted coordinates, the largest standard deviation is 

approximately 2.1 m, and 95% of standard deviation are smaller than 1.5 m. For the rejected 

coordinates, the largest standard deviation is approximately 21.3 m, and 5% of standard 

deviations are larger than 20.2 m. 
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Figure 8. Cumulative distribution for North- or East-coordinates for accepted points left and rejected points right. 

 

7. DISCUSSION AND SOME SUGGESTIONS FOR FUTURE WORK 

Detection and removal of occasional outliers introduce sudden small jumps in the estimated 

trajectory, as seen in figure 4 in the section with the simulated dataset. Depending on the actual 

application, there can be a need to smooth out such inconsistences. 

The handling of practical aspects does also deserve attention, e.g.: 

- methods and techniques on how to fill in gaps in estimated trajectories, 

- interpolation techniques when densifying the original trajectories, e.g. linear 

interpolation or splines, 

- optimization of computational speed, 

- datasets with individual trajectories where some observers choose to go left of an 

obstacle, e.g. a lake, and other choose go right, 

- datasets with very curved trajectories, 

- datasets with nested trajectories. 

 

Finally, alternative methods for dealing with outliers as well as the acceptance criteria for 

automatically rejecting segments with “bad” observations are interesting topics. E.g. when 

estimating the trajectory of centerlines of roads, a stricter acceptance criteria is required 

regarding choice of the same physical path than for e.g. hiking trials. This proximity 

requirement can for different applications be managed by tuning the augmentation of the a priori 

covariance matrices 𝛴𝑖
𝑗
 for observed coordinate (eq. 18). Assigning smaller track-offset terms 

(e.g. center lines of roads) will make the goodness of fit test (eq. 12) more sensitive to diverging 

paths than larger track-offset terms (e.g. hiking trials). How to assign proper track- offset values, 

𝜎𝑁,𝑇𝑟𝑎𝑐𝑘 and 𝜎𝐸,𝑇𝑟𝑎𝑐𝑘 , to take into account required proximity for individual physical paths 

should be further explored. 

 

8. CONCLUSIONS 

In this work, a method is proposed on how to automatically estimate one best fit trajectory from 

several individually measured trajectories. The proposed method uses a weighted least squares 

approach to take into account a priori accuracies and correlations of individual trajectories. An 

outlier detection algorithm based on multiple t-testing is used to isolate and omit bad 
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observations. The outlier detection algorithm might also detect if any selected paths 

significantly deviates from other choices of paths. Remaining segments of bad observations or 

multiple choices of paths can be identified by applying a final filter based on a statistical test of 

goodness of fit. 

The final product is a trajectory consisting of a temporally sequence of coordinates. Each 

estimated coordinate has an associated quality number in the form of a standard deviation.  

Due to erroneously observed coordinates or choice of multiple diverging paths during data 

collection, there might be gaps in the final trajectory. Eventual gaps can subsequently be flagged 

and give information on that additional measures must be used to finalize the trajectory. 

The proposed method can be applied to trajectories from different sources. E.g. trajectories in 

existing databases can be combined with newly observed trajectories. The difficult task then is 

how to assign proper a priori stochastic information to the different trajectories, ideally in the 

form of full variance-covariance information. 
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