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SUMMARY  

 

The overall trend rate, i.e. one-dimensional velocity in a GNSS time-series of a local coordinate 

component is one of the most important parameters for investigating deformed bodies, such as 

tectonic regions, landslides, mining fields and engineering buildings. The standard deviation 

(v) of this trend has been studied in many papers to figure out how precise trend rate can be 

determined. This standard deviation depends on i) the length of time-series (time-span), ii) the 

observation frequency, iii) the noise structure in the GNSS data, and iv) the type of the 

regression model if the time-span is shorter than about 2.5 years. Most of these studies, 

however, consider that only the white noise exists in the data. It has been reported that a GNSS 

time-series includes not only flicker noise with an amplitude which is 1.5 and 4.0 times bigger 

than the white noise, but also random walk noise whose amplitude changes depending on the 

monument type and local effects, as well as some other power-law noises occurring due to the 

different geophysical processes. Existence of these colored noises means that the time-series is 

temporally correlated. Hence, omitting them in the analysis of the GNSS time-series leads to 

very optimistic standard deviation for the trend rate and so, incorrect statistical decisions. This 

contribution aims to discuss the minimum detectable overall trend rate (MDTR) with the 80% 

power of the test for one coordinate component in GNSS time-series. While the time-span is 

longer than one year for daily GNSS data, the MDTR can be given as about 2.8v from the 

power function of the non-central 2-distribution. This MDTR is studied in GNSS time-series 

consisting of trend + annual and semi-annual signals for different noise models (different flicker 

noise and random walk noise models as functions of observing session duration dependent-

RMS repeatability), different time-spans between 1 year to 10 years as well as daily and 

monthly observation frequencies. According to the numerical results, if the flicker noise is 

dominant over the white noise, it is expected to have about 3-4 times bigger MDTR whereas 

random walk noise affects badly the trend rate more than the flicker noise does. The MDTR 

from the 24-hours-daily GNSS time-series with the common noise structure may be less than 1 

mm/year if the time-span is longer than three years. This rate increases if the colored noises 

increase as well. The longer observing session results in smaller MDTR in any noise models as 

expected. Interestingly, daily and monthly GNSS data provides similar MDTRs if the time-span 

is more than about 4 years. 
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1. INTRODUCTION 

 

Deformation analysis has been one of the main interests of geodesy and surveying community 

for about five decades. The quality of monitoring of the deformations has been improved since 

GPS or GNSS measurement technique was involved in deformation studies. The long-term 

monitoring of the deformed objects with GNSS yields the GNSS time-series for each of the 

local coordinate components. From this time-series, it is possible to derive overall-trend rate, 

i.e. one-dimensional velocity, or periodic movements occurring due to the inner or outer forces 

inducing on the deformed body. The overall-trend rate is used to figure out the movements of 

the deformed body in the long-term and the change of the deformation of the object in time. It 

is, therefore, one of the most important parameters in deformation analysis. 

 

Neglecting the short-term jumps or periodicities, a GNSS time-series is usually modelled with 

the following harmonic regression model:  
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where y is the n1 the coordinates vector; e  is the n1 random error vector of the coordinates, 

~ ( , )Ne 0 C ; C  is the nn covariance matrix of the coordinates; A is the n6 known coefficient 

matrix with full column of rank; x is the 61 unknown parameter vector; it  (i=1,2,…,n) is the 

observation epoch of time; 0y is the unknown shift parameter; v  is the unknown trend rate; 1c

and 1s are the unknown cosine and sine amplitudes of the annual signal, 2c  and 2s  are the 

unknown cosine and sine amplitudes of the semi-annual signal. 

 

Before any realization, if the covariance matrix C of the coordinates in Eq. (1) can be 

established based on the previous studies or experiences, one may obtain the expected standard 

deviation of the trend rate. This standard deviation depends on, 

 

–the observation frequency or the time difference between two sequential epochs; T=tj− ti, 

–the length of the time series (time-span), i.e. T=(n−1)t,  

–the noise structure in the matrix C,  

–the deterministic model in Eq. (1). 
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The higher observation frequency and the longer time-span of the time-series lead to the smaller 

standard deviation of the trend rate. As mentioned in Blewitt and Lavallée (2002), the annual 

signal (and semi-annual signal) does not cause significant change in the standard deviation of 

the trend rate if the time-span is longer than about 2.5 years (see also the next section). Hence, 

the sinusoidal signals in the deterministic model of Eq. (1) become important if the time-span 

is shorter than 2.5 years. 

 

The noise structure in the matrix C is the most complicated part in a GNSS time-series. If the 

noise structure of the matrix C is expressed as W
2I (independent and identically distributed 

white noise with W amplitude), the smaller W yields the smaller standard deviation of the 

trend rate. In this case, the white noise amplitude can be taken as the observing session duration 

() dependent-RMS error of repeatability as defined in Eckl et al. (2001). This repeatability can 

be assumed from GNSS precision studies, for example, as 9-0.5 [mmhours-0.5] for the North 

and East components and about 36-0.5 [mmhours-0.5] for the Up component.  

 

On the other hand, using the covariance matrix 
2

W I in a GNSS time-series leads to misleading 

error assessments. Because, it has been shown in many studies that a GNSS time-series contains 

not only white noise but also colored noises, such as flicker and random walk noises (Zhang et 

al. 1997; Mao et al. 1999; Williams et al. 2004; Bock et al. 2000; Langbein and Bock 2004; 

Amiri-Simkooei et al. 2007; Santamaria-Gomez et al. 2011; Wang et al. 2012). Therefore, the 

covariance matrix of the coordinates in a GNSS time-series should be taken as follows 

(Williams 2003; Amiri-Simkooei et al. 2007): 

 
2 2 2=  + +W F F RW RWC I Q Q  (2) 

where the indices F and RW denote the flicker noise and random walk noise, respectively; (…) 

and Q (…) denote the amplitude and the cofactor matrix of the corresponding colored noise. The 

cofactor matrices of the colored noises can be constructed by using the autoregressive approach 

of Hosking (1981) as shown in Williams (2003) (see the next section). For 
2 0 F  and 

2 0 RW

, the noise structure in Eq. (2) results in bigger standard deviations compared to the one with 
2

W I . In other words, neglecting the colored noises in the GNSS time-series yields more 

optimistic standard deviation for the trend rate. 

 

The covariance matrix C in Eq. (2) can be rewritten as follows: 

 
22

2 2

2 2
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
=  + + = 

 
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W F RW W

W W

C I Q Q Q  (3) 

where F W/   and RW W/    denote the flicker noise ratio and random walk noise ratio, 

respectively. These ratios can be presume according to the knowledge from the former 

experiences. For instance, the ratio F W/   lies between 1.5 and 4.0 [year-0.25] in GPS time-

series (Zhang et al. 1997; Calais 1999). The random walk noise ratio depends on the monument 
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type and local effects at the GNSS site. The worse monument conditions cause the bigger 

random walk noise ratio. Henceforth, with these presumed noise ratios, the covariance matrix 

in a GNSS time-series can be established in order to determine how precise trend rate can be 

achievable. At this point, the question arisen is how the covariance matrix in Eq. (3) can be 

written as the function of the observing session duration. For small noise ratios, the amplitude 

W  in Eq. (3) can be taken as the RMS repeatability depending on the observing session 

duration. However, for big noise ratios, the amplitude W  is to be predicted such that the RMS 

errors in the high frequency (for instance, in 7 days) which are produced by the cofactor matrix 

Q in Eq. (3) are equal to the RMS repeatability. This reconstruction is expressed in the next 

section. With this reconstructed covariance matrix, one may investigate also the influence of 

the observing session duration on the standard deviation of the trend rate while the GNSS time-

series includes the colored noises. 

 

The next question is which magnitude of trend rate is just detectable with a given power of the 

test. This magnitude is called the minimum detectable overall trend rate (MDTR) in the 

sensitivity analysis terminology (e.g. Aydin 2012). As shown in the next section, the MDTR is 

equal to about 2.8 times the standard deviation of the trend rate if the length of the time-series 

is longer than or equal to about one year for daily and monthly GNSS data.  

 

This contribution aims to the discuss the MDTRs in daily GNSS time-series (partly monthly 

time-series) for the time-span between 1 year and 10 years, for the flicker noise ratio from 0 to 

10 [year-0.25] and the random walk noise ratio from 0 to 10 [year-0.5] as well as observing session 

duration  for the deterministic model in Eq. (1).  

 

2. METHODOLOGY 

2.1 Cofactor matrices for the flicker and random walk noises 

According to the autoregressive approach of Hosking (1981), the cofactor matrix of a colored 

noise (QF for flicker noise and QRW for random walk noise) with spectral index  (=−1 for 

flicker noise and =−2 for random walk noise) is obtained by TTT, where T denotes the nn 

transformation matrix defined by (e.g. Williams 2003); 
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where T  is the sampling interval, and  is the gamma function. Since it is assumed herein 

that the GNSS time-series does not have any data gaps, the sampling interval is equal to the 

time difference between two sequential epochs. For instance, T  is 1/365.25 [year] and 1/12 

[year] for daily and monthly data, respectively.  
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2.2 Reconstructed covariance matrix C for observing session duration  

With the noise ratios of rF=F/W and rRW=RW/W, the cofactor matrix Q in Eq. (3) can be 

given by 

 

2 2( )F F RW RWr r= + +Q I Q Q  (5) 

Suppose that these noise ratios are known. Now, we will consider the variance factor for this 

cofactor matrix such that the resulting covariance matrix represents the RMS repeatability in 

high frequency while the noise ratios stay constants. In practice, the RMS repeatability is 

obtained from a GNSS time-series by considering the coordinates in w days, for instance, using 

the coordinates in the form of 1[ ( ) ( )]= T

w wy t  ...y ty . The error vector 1[ ( ) ( ) ]= − − T

w wy t y ...y t ye  

is obtained by using their mean value y . This error vector can be given also by 
w w=e Ry , 

where R is the ww redundancy matrix, 1( )−= − T T
R I B B B B , with the w1 ones vector B. 

Hence, the RMS repeatability is obtained as follows: 

 

RMS2= ( ) / ( ) /=T T

w w w ww we e y Ry  (6) 

If the coordinate vector wy  is distributed as ( )( , )2

w w wN yy B Q , where ( )wQ  denotes the ww 

sub-cofactor matrix of Q in Eq. (5) for the corresponding w days, the expectation of the 

quadratic form of 
T

w wy Ry  can be given by (Koch 1999; p. 134): 

 
2

( )( ) ( ( ))= T

w w w wE try Ry RQ  (7) 

The left-hand side of Eq. (7) is also equal to RMS2w from Eq. (6). Hence, the variance factor 

2

w  is obtained by 

 
2

( )

RMS

( )


 =2

w

w

w

tr RQ
 (8) 

By considering non-overlapped windows with the length of w, from Eq. (8), about n/w variance 

factors are predicted for whole GNSS time-series. These factors will be very close to each other. 

Their arithmetic mean, say  2

w , gives the common variance factor for the cofactor matrix Q in 

order to get 

 
2 2 2( )w F F RW RWr r=  + +C I Q Q  (9) 

A generated random error vector according to this covariance matrix results in the desired RMS 

repeatability in the high frequency while the noise ratios are constants. In Figure 1, for the 

RMS=9-0.5 [mmhours-0.5], the generated random error vectors with the mvnrnd function of 

MATLAB for three different noise models are shown.  
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Figure 1. Generated random error vectors for RMS=9-0.5 [mmhours-0.5] (left: white noise 

only, middle: flicker noise ratio is 2 [year-0.25], random walk noise ratio is 1 [year-0.5], right: 

same noise ratios as is in the middle panel, but for =8 hours]) 

 

2.3 Minimum detectable overall trend rate (MDTR) 

Suppose that the trend rate and its standard deviation are estimated from the mathematical 

model in Eq. (1) as v̂  and ̂v , respectively. In order to decide whether the trend rate is 

significant or not, first the following two hypotheses are postulated: 

 

0
ˆ: ( ) 0=H E v  , ˆ: ( ) = A vH E v  (10) 

If the null hypothesis 0H  is true, the test statistic 
2ˆ ˆ( )vv/  follows the central F-distribution, 

2ˆ ˆ( ) (1, 6) −vv/ F n  with the numerator 1 and denominator degrees of freedom 6−n . In this 

case, the decision is made by comparing the test statistic with the upper- percentage value 

1, 6,1− −nF  (threshold value) of the central F-distribution. For instance, if the test statistic exceeds 

the threshold value, the trend rate v̂  is accepted as significant with the -risk of probability.  

 

Behind the given detection test procedure above, the alternative hypothesis AH  may be true. In 

this case, the test statistic 
2ˆ ˆ( )vv/  follows the non-central F-distribution, 

2ˆ ˆ( ) (1, 6; ) − vv/ F n  with the non-centrality parameter   

2

2


 =



v

v

 (11) 

where 
2v  is the expected value of 

2̂v . From the known v  and v , the probability of correctly 

accepting the alternative hypothesis, i.e. the power of the test, can be given as follows: 

 

=1−cdf( 1, 6,1− −nF ; 1, n−6, ) (12) 
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where cdf denotes the cumulative distribution function of the non-central F-distribution. Instead 

of computing the power of the test as in Eq. (12), the non-centrality parameter 0 yielding the 

desired power of the test (for instance, 80%) can be computed (see, Aydin 2012). Hence, if we 

consider the parameter 0 in Eq. (11), the minimum detectable overall trend rate (MDTR) with 

the given power of the test is obtained by  

 
0.5

, 0 =  v min v
 (13) 

The standard deviation v  can be predicted beforehand using the harmonic regression model 

in Eq. (1) for different noise structures defined by C in Eq. (9). Hence, the MDTRs for these 

different cases can be obtained by using Eq. (13). These trend rates are discussed in the next 

section.  

 

The non-centrality parameter 0 in Eq. (13) depends on the degrees of freedom (n−6) for the 

constant -probability. According to table given in Aydin (2012), while the numerator degrees 

of freedom is 1 and the power of the test is 80%, the non-centrality parameter becomes 8.4, 8.2, 

8.0 and 7.9 for the degrees of freedom 30, 50, 100 and , respectively (the non-centrality 

parameter is obtained from  the non-central 2-distribution for the degrees of freedom , see 

e.g. Aydin and Demirel 2005). For daily GNSS time-series, if the time-span is 1 year, the 

degrees of freedom is about 360. Hence, for the time-span being longer than or equal to 1 year 

in daily GNSS time-series, the MDTR is given approximately as follows: 

 

, 2.8  v min v  (14) 

When the time-series includes the trend rate with the magnitude given in Eq. (14), this trend 

rate will be detected with the power of the test of 80% with the classical test procedure 

mentioned above if the covariance matrix is precisely known. For a monthly GNSS time-series, 

the MDTR can be computed also with Eq. (14) when the time-span is about 4 years. 

 

2.4 Minimum time-span to detect the trend in harmonic regression models 

The time-span, i.e. the length of the time-series is an important factor while detecting the overall 

trend. However, this does not mean that the time-span should be at least 1 year or 2.5 years 

even if the time-series includes annual and semi-annual signals. The only restriction is that the 

degrees of freedom of the model in Eq. (1) should be bigger than 0 to estimate the trend rate. 

In this case, of course, the standard deviation and the factor of 2.8 in Eq. (14) gets bigger and 

so, the MDTR reaches very high value. In other words, the ability of detecting the trend or 

velocity decreases if the time-span is too short. But it is worth mentioning that this interpretation 

is valid from the mathematical point of view. In practice, nobody attempts to determine the 

overall trend rate if the time-span is shorter than 2 years because of many kinds of unexpected 

errors occurring during the GNSS campaigns. However, why do we insist on 2.5 years? This is 

mainly due to the common missing interpretation of the paper of Blewitt and Lavallée (2002). 

They imply that the time-series should be at least 2.5 years in order to estimate the trend rate 

using a simple regression model with the same precision of the harmonic regression model as 
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in Eq. (1). The ratios between the standard deviations of the trend rates obtained with two kind 

of models are shown in Figure 2. As seen in this figure, the standard deviation of the trend rate 

deduced from the simple regression model gets closer to the one of the original harmonic 

regression model including the annual and semi-annual signals when the time-span is about 

longer than 2.5 years. Hence, the effect of the corresponding sinusoidal signals is compensated 

somehow in the regression model after 2.5 years. But it does not mean that the shortest time-

span needed is 2.5 years for evaluating the MDTRs in the time-series.  

 

According to the interpretations mentioned above, no time-span restriction exists for 

investigating the MDTRs except having a positive number for the degrees of freedom in the 

harmonic regression model in Eq. (1). However, we will consider at least 1 year-time span in 

GNSS time-series to get rational results.  

 

 
 

Figure 2. The ratio between the standard deviation of the trend rate obtained from simple 

regression model and the corresponding harmonic regression model including different 

sinusoidal signals for monthly, quarterly and semi-annually time-series 

 

 

3. EXAMPLES AND DISCUSSIONS 

 

In our examples, the time-span is taken from 1 year to 10 years. The covariance matrix C is 

established with Eq. (9) such that the flicker noise and random walk noise ratios lie in the range 

between 1 and  10 while the RMS repeatability becomes 9-0.5 [mmhours-0.5].  

Firstly, the daily GNSS time-series is investigated. For the observing session duration =24 

hours, the MDTRs are given in Figure 3. The left panel of Figure 3 shows the changing of the 
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MDTR against changing of time-span and flicker noise ratio whereas the right panel denotes 

the changing of the MDTR against changing of time-span and random walk noise ratio while 

the flicker noise ratio is fixed to 2 [year-0.25].  

 

 
 

Figure 3. MDTRs for different flicker and random walk noise ratios while the RMS 

repeatability (9-0.5) is about 1.8 mm (=24 hours ) with the time-span from 1 year to 10 years 

(left: changing of flicker noise ratio, right: changing of random walk noise ratio) (notice that 

the scale of the y axes are different) 

 

According to Figure 3-left panel, it is seen that the MDTR gets bigger while increasing flicker 

noise ratio. However, the change of the MDTR is not proportional to the change in the flicker 

noise ratio if the time-span is smaller than about 7 years. The blue line in this panel denotes the 

case in which the time-series includes only white noise. According to this case, the MDTR 

becomes about 0.5 mm/year if the time span is shorter than or equal to 2 years. But this is not 

a realistic case encountered in practice. The dashed-red line denotes the flicker noise ratio of 2 

[year-0.25]. If a GNSS time-series has such a flicker noise, the same ability in the white noise 

only-case is obtained nearly in 10 years. The MDTR becomes 1 mm/year when the time-span 

is about 3 years for this flicker noise ratio and RMS repeatability of about 1.8 mm. From Figure 

3-right panel, it is seen that the increment in the random walk noise causes bigger MDTRs than 

the flicker noise does. This implies how the monuments and locations of the GNSS sites are 

important in deformation studies. If the random walk noise occurs in GNSS time-series, it is 

impossible to detect the trend rates of 1 mm/year according to the measurement conditions 

specified in this example.  

 

The same MDTRs in Figure 3 are computed for the observing session duration of =8 hours 

(the RMS repeatability is around 3.2 mm) and given in Figure 4. When we compare the panels 
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with those in Figure 3, it is seen that the session duration is an important parameter for MDTRs 

in GNSS time-series. The MDTRs in Figure 4 are about (24/8)0.5 times bigger than those in 

Figure 3. The achievable MDTR of 1 mm/year in 3 years in Figure 3 for =24 hours can be 

succeeded in about 6 years if the observing session duration decreases to =8 hours. 

 

 

Figure 4. MDTRs for different flicker and random walk noise ratios while the RMS 

repeatability (9-0.5) is about 3.2 mm (=8 hours ) with the time-span from 1 year to 10 years 

(left: changing of flicker noise ratio, right: changing of random walk noise ratio) (notice that 

the scale of the y axes are different) 

 

How does the observation frequency affect the MDTRs? To reply this question, the MDTRs 

are recomputed for the same conditions above but for monthly data. For different observing 

session duration (=8, 12 and 24 hours) while the monthly GNSS data includes the flicker noise 

with the ratio of 2 [year-0.25], the MDTRs are given in Figure 5. For comparison purposes, the 

MDTR in the daily GNSS data is also shown as thick-grey line in Figure 5 (this line is the same 

with the dashed-red line in Figure 3). As seen in Figure 5, the MDTR in monthly GNSS data is 

nearly the same with the one in daily GNSS data when the time-span is 4 years if the observing 

session duration is 24 hours. Moreover, after 6 years, all cases considered in Figure 5 results in 

very similar MDTR results. Consequently, it is seen that the long time-series may compensate 

the effects of observing session duration and observation frequency in detecting the trend rates 

for the example considered here.  
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Figure 5. Comparison of MDTRs in monthly GNSS time-series with daily GNSS time-series 

(flicker noise ratio is 2 [year-0.25] while no random walk exists) 

 

4. CONCLUSIONS 

 

The overall trend rate in a GNSS position time-series is an important parameter for investigating 

deformed bodies, such as tectonic regions, landslides, mining fields and engineering buildings. 

The standard deviation of this trend has been studied in many papers to figure out how precise 

trend rate can be determined. This standard deviation depends on the length of time-series 

(time-span), the observation frequency, the noise structure in the GNSS data, and the type of 

the regression model if the time-span is shorter than about 2.5 years. Generally, only the white 

noise is assumed in the data. However, it has been reported that a GNSS time-series includes 

also flicker noise, random walk noise as well as some other power-law noises occurring due to 

the different geophysical processes. Existence of these colored noises means that the time-series 

is temporally correlated. Hence, omitting them in the analysis of the GNSS time-series leads to 

very optimistic standard deviation for the trend rate and so, incorrect statistical decisions. This 

contribution aims to discuss the minimum detectable overall trend rate (MDTR) with the 80% 

power of the test in GNSS time-series sets consisting of trend, annual and semi-annual signals 

for different noise models (different flicker noise and random walk noise models as functions 

of observing session duration dependent-RMS repeatability), different time-spans between 1 

year to 10 years as well as daily and monthly observation frequencies. According to the 

numerical results, if the flicker noise is dominant over the white noise, it is expected to have 

about 3-4 times bigger MDTR whereas random walk noise affects badly the trend rate more 

than the flicker noise does. The MDTR from the 24-hours-daily GNSS time-series with the 

common noise structure may be less than 1 mm/year if the time-span is longer than three years. 
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This rate increases if the colored noises increase as well. The longer observing session results 

in smaller MDTR in any noise models as expected. Furthermore, daily and monthly GNSS data 

provides similar MDTRs if the time-span is more than about 4 years. 
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